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Modern distributed systems involve a diverse set of participants—ranging from cloud

providers to jurisdictions, organizations, and individuals—who need to share data with-

out necessarily trusting one another. These systems must ensure data availability and in-

tegrity, even when parties have disjoint, selfish, or adversarial interests. Byzantine Fault

Tolerant (BFT) protocols provide strong guarantees in such settings and, for example,

underpin much of today’s blockchain infrastructure. However, existing BFT solutions

often fall short, delivering poor performance and rigid, restrictive interfaces.

This dissertation proposes a new approach to efficient data sharing in environments

with distributed trust—one that combines the robustness of BFT protocols with the per-

formance and flexibility of traditional databases. We challenge the conventional BFT

architecture, which centers on constructing a shared, tamper-proof totally ordered log

and layering transactions on top. Instead, we advocate building a partially ordered BFT

datastore directly. In particular, we argue that BFT systems, like traditional databases,

should guarantee only serializable executions—those equivalent in effect to some total

order—thereby avoiding the overhead of explicit total ordering.

We realize this approach through two systems: Basil and Pesto. Basil is a distributed

BFT key-value store that integrates replication and transaction coordination into a sin-

gle, low-latency architecture. It adopts a client-driven design, enabling parallel and

independent transaction execution and improving robustness over traditional BFT pro-

tocols. To support richer application needs, Pesto extends Basil with a SQL-style query

interface, allowing seamless integration with existing systems.
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CHAPTER 1

INTRODUCTION

Modern distributed systems consist of a variety of participants—from cloud

providers to jurisdictions, organizations, and individuals—that all want to share data.

Such systems must maintain the availability and integrity of the data, even when differ-

ent parties have disjoint or selfish interests, and lack trust in any one party. Byzantine

Fault Tolerant (BFT) protocols offer datastores such a promise; for instance, they lie

at the heart of today’s blockchain infrastructure. Existing solutions however, fall short,

providing both lackluster performance and restrictive application interfaces. In this dis-

sertation, we advocate for a new approach to efficient data sharing with distributed trust

that combines the robustness of BFT systems with the efficiency and flexibility of tradi-

tional database systems.

1.1 Distributed Databases with Limited Trust

Modern web applications must be highly available. Users expect continuous, uninter-

rupted service—often measured in multiple “nines” of reliability—and even brief down-

times can be costly, risking user frustration and eroding goodwill. To ensure reliable

uptime, application providers rely on replication: deploying redundant copies (replicas)

of the underlying data store ensures that applications remain available even as some

replicas fail. These replicas may be located within the same datacenter—also aiding

with load balancing— or distributed across geographically distinct regions to mitigate

regional outages and to improve access latency.

However, operating multiple data copies introduces concerns around consistency.

High availability is of little value if the underlying data is not correct. As such, appli-
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cations often seek strong consistency guarantees: users should observe a coherent and

up-to-date view of the system regardless of which replica they interact with, and the

system must tolerate failures without risking data loss or corruption.

In addition to being available and correct, web applications must be fast. For in-

stance, Amazon once famously reported a 1% drop in sales for every additional 100 ms

of latency experienced by users [70]. Google likewise observed a 20% drop in user traf-

fic when page load times increased by just 500 ms [70, 117]. To meet these performance

demands, applications strive to (i) minimize coordination during replication, (ii) execute

operations in parallel where possible, and (iii) scale out horizontally with ease.

To ensure correct parallel execution, developers rely on transactions. Transactions

guarantee atomicity, sparing developers from the complexity of reasoning about inter-

leaved operations. For scalable execution, data stores are further partitioned across

(replicated) shards, allowing independent, commutative operations to proceed concur-

rently without interference.

Datastore (Back-End)

Shard A Shard B

Replica Replica

Application 
(Front-End)User

Transaction

Figure 1.1: A simple distributed database architecture. Multiple users issue transactions con-
currently, which are routed to the appropriate shard based on the requested data. Within each
shard, users interact with their nearest replica, while state changes are consistently replicated
across all replicas within that shard.

This distributed database architecture (Fig. 1.1) is well suited for settings with a

single administrative domain, where a single organization, jurisdiction, or individual
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operates the data store. It provides high availability, strong data integrity, and good

performance. A prominent example is Spanner [40], Google’s flagship distributed data

storage system, which underpins many of its applications and serves billions of users.

Modern applications, however, increasingly require the ability to share data across

organizational boundaries. The architecture described above does not extend gracefully

to multi-administrative-domain environments, where mutually distrustful parties seek to

jointly operate a service.

Consider, for instance, a consortium of banks (illustrated in Figure 1.2) aiming to

build a decentralized payment infrastructure, thereby bypassing traditional centralized

clearinghouse networks [13]. Although no single bank fully trusts the others, they must

still coordinate and share resources to support the joint system.

Replica

Mutual Distrust

Permissioned 
Group

Heterogeneous 
Participants

Joint  Service

Figure 1.2: A simple banking consortium. Four mutually distrustful banks aim to provide a joint
transaction clearing service.

Unfortunately, existing distributed database solutions are typically designed to tol-

erate only crash failures, where nodes simply stop responding. They do not account for

more severe adversarial behaviors, such as participants that deliberately violate protocol

semantics—by lying, equivocating, or attempting to corrupt the system’s state.

Byzantine Fault Tolerance (BFT) [111] offers a solution: BFT systems aim to ensure
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consistency even in the presence of a subset of misbehaving (or Byzantine) participants.

Originally developed to improve the resilience of mission-critical infrastructure—such

as spacecraft control systems or national power grids—BFT techniques are now widely

adopted in modern blockchain platforms [13, 60, 62, 64, 65, 119]. These systems en-

able new forms of decentralized coordination and offer promising opportunities across

diverse domains, including healthcare [118], financial services [13, 58, 87], and supply

chain management [47, 186].

1.1.1 BFT Deployment Challenges

At the heart of most existing BFT solutions lie replicated state machines [30, 35, 80,

101, 192]. They offer the abstraction of a shared, tamper-proof, totally ordered log: all

participants agree on the same sequence of operations—even if a subset of participants is

Byzantine. This abstraction greatly simplifies the task of building consistent application

state on top. For example, in the context of our consortium of banks, account balances

can be deterministically computed from the log, allowing the system to behave as though

it were a trusted, centralized database (Fig. 1.3).

A: Deposit(5) B: Deposit(20) B: Transfer(15, A) A: Withdraw(10) B: Withdraw(5)

Bal
A: 20
B: 5

Bal
A: 20
B: 5

Figure 1.3: The shared totally ordered log used by the banking consortium. Alice and Bob are
customers at different banks but observe the same, consistent view of the world.
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While this abstraction is powerful and desirable for building applications, imple-

menting it in a way that is efficient, robust, and developer-friendly remains a significant

challenge.

Performance Shortcomings While replicated state machines offer strong consistency

in the presence of Byzantine faults, they come with substantial performance costs. Most

notably, BFT protocols suffer from high latency. Establishing a global total order re-

quires multiple rounds of coordination, each involving resource-intensive cryptographic

authentication (e.g., signature generation and verification). The two most widely used

BFT state machine replication protocols—PBFT [30] and HotStuff [192]—require 5

and 9 message delays, respectively, before responding to a client request. These delays

compound significantly in interactive transactional workloads, where each operation

may depend on the result of the previous one.

Total ordering also imposes a throughput bottleneck. Since all operations must be

serialized, much of the inherent parallelism in a transaction workload is lost. This is inef-

ficient, as many transactions are commutative and could safely execute in parallel. Con-

sider, for example, Alice and Bob purchasing a Ferrari and an ice cream, respectively—

these transactions touch disjoint objects and yield the same final state regardless of their

execution order.

While software transactional memory (STM) techniques [49, 68, 162] can help re-

cover some parallelism, they introduce additional complexity and still require establish-

ing an initial total order.

To mitigate this, some BFT systems adopt sharding [7, 98, 145, 146, 194], allowing

transactions that access disjoint shards to proceed concurrently. However, this too is a

limited remedy. Within each shard, operations must still be totally ordered. Cross-shard
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transactions require coordination via Two-Phase Commit (2PC), which itself involves

additional ordered steps—introducing further latency. Moreover, sharding is not always

practical. Arbitrary sharding can lead to increasingly thin partitions, where transactions

span many shards. In such cases, cross-shard coordination overheads grow linearly with

the number of involved shards—incurring substantial cryptographic and communication

costs in a BFT setting.

Finally, BFT replicated state machines exhibit poor load balancing, limiting scala-

bility under high demand. Because all replicas must redundantly execute every request,

resource utilization is poor. This is particularly problematic in BFT systems, which

already require higher levels of redundancy to tolerate faults.

Brittle Robustness BFT protocols typically rely on a dedicated leader or sequencer to

establish the total order. This centralization creates both a performance bottleneck, and

a point of fragility. All requests must pass through the leader, which can throttle the

system’s throughput. While recent protocols decouple data dissemination and scale it

across all replicas [73, 165, 166], the leader remains essential for coordinating agree-

ment and ensuring progress.

This design raises both fairness and robustness concerns. The leader has dispropor-

tionate control over transaction ordering and may censor or reorder transactions to its

advantage—e.g., by executing a sandwich attack in finance applications [44]. Further-

more, the leader is a single point of failure. Its crash or slowdown can halt the system

until a new leader is elected. Recent research [73] shows that even temporary interrup-

tions can cause longer-term performance degradation, despite recovery.

Lack of Programmability Modern applications favor interactive transactions, which

simplify development by allowing developers to express complex workflows incremen-
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tally and intuitively, while still ensuring strong correctness guarantees [40, 149]. The

designers of Google Spanner, for instance, argue that "it is better for application pro-

grammers to deal with performance problems due to overuse of transactions [...] than

always coding around the lack of transactions" [40].

Unfortunately, the high latency inherent in BFT protocols renders interactive trans-

actions largely impractical. To offer reasonable performance, BFT systems often re-

sort to simplified transaction models: assuming fixed structure [146], requiring ad-

vance knowledge of read/write sets [17, 145, 146], or restricting execution to a one-

shot model—i.e. a single request with no interaction [146]. Most blockchain systems,

for instance, rely on stored procedures (commonly called smart contracts [198]), which

execute entirely server-side without further client input [16, 60, 62, 64, 65].

This limits programmability. Applications must be written in a domain-specific lan-

guage (DSL), complicating both development and maintenance. Updating logic requires

carefully coordinated deployments to ensure consistency across replicas.

Ironically, this server-centric model can also hinder scalability. Although interac-

tive transactions incur higher latency, they allow most application logic to be executed

client-side—e.g., in stateless frontends that can scale independently of the replica set

and without requiring (expensive) consensus coordination. In contrast, stored proce-

dures concentrate all execution at the replicas, creating scalability bottlenecks under

load.
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1.1.2 Contributions

In this dissertation, we propose a more principled, performant, and expressive approach

to realizing the abstraction of a Byzantine fault tolerant (BFT) totally ordered log. We

draw on the lessons of classical databases, which use interactive transactions to effi-

ciently implement the abstraction of a sequential, general-purpose BFT log. In these

systems, transactions need not execute in strict sequence; rather they must produce ex-

ecutions that are equivalent to some serial schedule—a property known as serializabil-

ity [22, 147]. This ensures correctness while allowing for high concurrency: ordering is

required only for conflicting operations.

We argue that BFT systems can—and should—adopt a similar philosophy. Rather

than enforcing a total order and layering database-like transactions on top, we propose to

decouple the abstraction of a totally ordered log from its implementation. Our approach

directly realizes the log abstraction on top of a partially-ordered distributed database.

This shift enables both better performance and improved robustness. For exam-

ple, replicas no longer need to agree on a total order upfront, and can therefore avoid

using a leader. However, giving up total order introduces new challenges. How can

the system reliably (and correctly) resolve conflicts when operations do not commute?

Without a globally agreed-upon order, correct replicas may process transactions in dif-

ferent orders—and diverge. Worse, misbehaving participants may exploit this ambiguity

to attack the system’s integrity. Users cannot trust any single replica to produce a cor-

rect result, yet even correct replicas may (legitimately) disagree. How then can clients

receive trustworthy results and make reliable progress?

This dissertation addresses these questions through the design and implementation

of two systems, Basil and Pesto, which both scale the abstraction of a totally ordered

8



log—the former as a BFT key-value store, and the latter as a full BFT SQL database.

Our work contributes the following:

1. Formalizing correctness for transactional BFT applications We begin by address-

ing a foundational question: what does correctness mean in a Byzantine setting?

At a high level, our system must preserve the illusion of a sequential execution. For

instance, two concurrent transactions accessing the same data should appear to execute

in isolation and should never observe inconsistent views. Additionally, the system must

be robust to Byzantine behavior: malicious participants should neither violate correct-

ness, nor prevent progress.

However, Byzantine participants can also submit transactions. What guarantees

should hold for these? And how should their effects be perceived by correct participants?

We propose two complementary correctness properties:

• Byzantine Isolation, which ensures safety. Correct clients must observe a data

state that could have resulted from the actions of correct clients alone. Byzantine

clients may violate isolation for their own transactions, but cannot cause correct

participants to observe inconsistent state.

• Byzantine Independence, which ensures progress. It bounds the influence that

Byzantine actors can exert on the success or failure of operations. Byzantine

clients can harm their own transactions but cannot impede those of correct clients.

2. Basil, a scalable BFT key-value store To scale the abstraction of a totally ordered

log, we present Basil, a distributed BFT key-value store that supports serializable, inter-

active transactions with high performance and robustness.

Basil draws inspiration from crash fault tolerant distributed databases [138, 195],
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and avoids imposing a total order. Instead, it integrates replication and transaction coor-

dination (e.g., concurrency control and Two-Phase Commit) into a unified, low latency

protocol.

To uphold Byzantine Isolation and Independence, Basil embraces the principle of in-

dependent operability: safety and liveness are enforced on a per-client, per-transaction

basis. Clients are responsible for driving the execution and commit of their own trans-

actions, and proceed independently and in parallel. Basil uses optimistic concurrency

control to detect and resolve conflicts. In the absence of contention and faults, clients

can commit transactions in just a single round-trip.

Our evaluation shows that Basil outperforms traditional order-based BFT systems

by 4-5x in throughput, while achieving performance within 4x of TAPIR [195], a lead-

ing crash fault tolerant (CFT) system. Crucially, Basil remains robust under failure:

faulty clients affect only their own or conflicting transactions—and correct clients can

safely resolve stalled conflicting transactions themselves. With 30% Byzantine clients,

throughput degrades by less than 25%.

3. Pesto, a plug-and-play BFT SQL database While Basil delivers robustness and per-

formance, it lacks support for expressive query interfaces. To bridge this gap, we present

Pesto, a general-purpose BFT SQL database that builds on Basil and adds support for

rich queries.

Supporting SQL-style queries—without total order—in a Byzantine setting intro-

duces new challenges. First, ensuring serializability for arbitrary queries requires trust-

ing the correctness of computation performed by potentially faulty replicas. Yet, due

to asynchronous execution and partial orderings, even correct replicas may produce

different—but still valid—results. This makes it difficult to determine the integrity of
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query results. Second, optimistic concurrency control traditionally performs poorly for

range queries, which must—at least logically—lock all keys the query accesses, reduc-

ing concurrency.

Pesto addresses both challenges with a key insight: query execution requires consis-

tency and conflict-detection only over the predicate relevant to the query—not the entire

database. Pesto leverages this insight to implement a novel, client-driven snapshot syn-

chronization mechanism which ensures that replicas agree on the relevant subset of data

for a given query. To minimize transaction conflicts, Pesto employs a predicate-aware

optimistic concurrency control scheme that only aborts concurrent transactions that vi-

olate query semantics.

Our evaluation shows that Pesto significantly outperforms traditional BFT sys-

tems that layer SQL functionality on top of total ordering (e.g., 2.3x higher through-

put and up to 3.9x lower latency on TPC-C). It also performs competitively even

with PostgreSQL [78], a widely used unreplicated production-grade SQL database—

achieving equivalent throughput on TPC-C. Pesto’s client-driven design minimizes the

impact of replica failures and ensures robust performance.

1.2 Dissertation Overview

This dissertation is organized as follows. Chapter 2 provides foundational background

on transactional databases and Byzantine Fault Tolerance (BFT). It introduces key con-

cepts in transaction processing, surveys the architecture of modern distributed databases,

and reviews representative BFT consensus protocols. Chapter 3 formalizes correctness

criteria for transactional applications operating in Byzantine environments and presents

Basil—a distributed BFT key-value store that achieves high performance and robustness
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by eschewing total ordering in favor of a parallel, client-driven architecture. Chapter 4

extends this approach to support richer query semantics. It presents Pesto, a distributed

BFT SQL database designed to integrate seamlessly with existing applications while

maintaining strong robustness and performance. Finally, Chapter 5 concludes the dis-

sertation and highlights additional related work not covered in the main chapters.
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CHAPTER 2

BACKGROUND

The previous chapter scoped the goal of this dissertation: to build a scalable Byzan-

tine Fault Tolerant (BFT) database that provides high performance, strong robustness,

and an expressive application interface. This chapter provides the necessary background

on transactional systems, BFT, and distributed databases to understand the challenges

and solutions presented in this dissertation.

2.1 Transactions

Databases provide a way to store, retrieve, and manipulate data in a structured manner.

They allow users to access their data, perform queries, and execute transactions.

A transaction is a sequence of operations that appears to take effect atomically, or

“instantaneously” [147]: transactions either complete entirely or have no effect at all,

leaving the database in a consistent state. Transactions simplify application development

by providing developers with strong consistency guarantees, even when operations exe-

cute concurrently. This makes them essential for applications like banking, e-commerce,

and any system where data integrity is critical.

begin() r(a) → 100 r(b) → 0w(a, 50) w(b, 50) commit()

Figure 2.1: A transaction T defines an atomic sequence of operations. Here r denotes a read
operation and w denotes a write operation.

Figure 2.1 illustrates a simple transaction that transfers money between two ac-

counts. The payment transaction consists of two actions: deducting an amount from

one account and adding the same amount to another account. If either operation fails,
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the entire transaction is rolled back, ensuring that no money is lost or created.

Traditionally, transactions are said to uphold the four ACID properties: Atomicity,

Consistency, Isolation, and Durability.

• Atomicity: A transaction is an atomic unit of work, meaning that either all opera-

tions in the transaction are executed, or none are. If a transaction fails, the system

is left in a state as if the transaction never occurred.

• Consistency: A transaction brings the database from one consistent state to an-

other. It ensures that the database remains in a valid state before and after the

transaction. Consistency is dependent on the invariants of the running applica-

tion. It may be enforced either explicitly, using database features (e.g., unique

or foreign key constraints), or implicitly, via application-level checks (e.g., the

application logic ensures that the sum of balances remains constant).

• Isolation: Isolation defines a contract on how concurrent transactions inter-

act. It determines when the effects of executing transactions become visible to

each other, and what anomalies may arise. Weaker isolation constraints per-

mit higher levels of concurrency—at the risk of violating integrity guarantees—

while the strongest isolation constraints ensure that applications execute free of

anomalies—at the cost of lower performance.

• Durability: Once a transaction is committed, its effects are permanent and survive

system failures. The database guarantees that the changes made by a committed

transaction will not be lost.
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2.1.1 Serializability, the Gold Standard for Isolation

To ensure high performance, transactional databases permit concurrent execution of

transactions. However, this concurrency can introduce anomalies if transactions inter-

leave in undesirable ways. Improper interleavings may cause unexpected behaviors

such as dirty reads, non-repeatable reads, and phantom reads, all of which can violate

the consistency of the database state [18]. To prevent such anomalies, databases enforce

isolation, which governs how transactions interact and what inconsistencies may oc-

cur. Modern database systems support multiple isolation levels, each offering a different

balance between performance and consistency guarantees.

This dissertation focuses specifically on transactional systems that implement

serializability, the most stringent standard isolation level [11, 18].1 At a high level,

serializability ensures that transactions produce results equivalent to some serial execu-

tion order. This allows developers to reason about applications as if transactions ran

in complete isolation—avoiding anomalies and maintaining strong consistency of the

database state—, while still benefiting from the performance gains of concurrency.

Formally, we define serializability as follows:

Let T1, T2, ..., Tn be a set of transactions. Each transaction Ti consists of a se-

quence of read and write operations, ending with either a commit or an abort. A trans-

action schedule is a (possibly interleaved) sequence containing all operations from T1,

T2, ..., Tn. A serial schedule executes each transaction’s operations contiguously, with-

out interleaving—i.e., all operations of T1 occur before any of T2, then all of T2 before

T3, and so on. In such schedules, transaction executions are strictly non-overlapping.

1Strictly speaking, the strongest isolation level is strict serializability [4, 147], which enforces external
consistency (i.e., it preserves real-time ordering and causality). However, plain serializability is typically
the strongest isolation level implemented in production database systems [37, 78, 143, 144].
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Put differently, a schedule is serializable if it can be transformed into a serial sched-

ule by reordering its operations in a way that preserves the outcome of their execution.2

Definition (Serializable) A transaction schedule is serializable if all operation out-

comes are equivalent to those of some serial schedule, i.e., as if the transactions had

executed one after another without interleaving.

r1(a) → 100

r1(c) → 100

begin1()

w1(a, 0)

w1(c, 200)

commit1()

r2(b) → 100

r2(c) → 200

begin2()

w2(b, 50)

w2(c, 250)

commit2()

r1(a) → 100

r1(c) → 100

begin1()

w1(a, 0)

w1(c, 200)

commit1()

r2(b) → 100

r2(c) → 100

begin2()

w2(b, 50)

w2(c, 150)

commit2()

r1(a) → 100

r1(c) → 100

begin1()

w1(a, 0)

w1(c, 200)

commit1()

r2(b) → 100

r2(c) → 200

begin2()

w2(b, 50)

w2(c, 250)

commit2()

Serial Non-Serial 
Non-Serializable 

Non-Serial 
Serializable 

Figure 2.2: Serializability example. Two transactions, T1 and T2, execute concurrently. Their
execution is serializable only if the outcome is equivalent to some serial order (e.g., T1 before
T2), ensuring the database remains in a consistent state.

Example: Bank Transfer We illustrate serializability with a simple example involving

two transactions that transfer money between accounts. Consider a database with three

accounts—owned respectively by users A, B, and C—each with an initial balance of

$100. Both users A and B owe user C money, and both end up executing their respective
2This characterization of serializability follows conflict serializability [22], a widely used and practi-

cally enforceable definition. Other, more general definitions—such as view serializability [189]—permit
more complex interleavings but are harder to verify and thus less commonly implemented in practice.
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payment transactions concurrently: A’s transaction (T1) transfers $100 from A’s account

to C’s account, and B’s transaction (T2) transfers $50 from B’s account to C’s account.

Each transaction consists of four operations: two reads to determine the current account

balances (one to each account), and two writes to reflect the new balances.

Figure 2.2 illustrates three execution schedules of these two transactions. The first

schedule is serial, where T1 executes first, followed by T2. In this case, the final balance

of A’s account is $0, for B it is $50, and for C it is $250. This is consistent with the

initial balances of all accounts and the intended transfer amounts.

The second schedule is non-serial and non-serializable. Both T1 and T2 read the ini-

tial balance of C’s account ($100), and then each writes their own updated value—$200

(= $100 + $100) for T1, and $150 (= $100 + $50) for T2—resulting in an inconsistent

final state. In this example, the final balance of A’s account is $0, but the balance of C’s

account is only $150: the $100 transferred by A has effectively been lost!

The third schedule is non-serial, but it is serializable. Here, T2’s read of C’s account

reflects the result of T1’s prior write, resulting in a correct final state.

2.1.2 Concurrency Control

Serializability defines a strong isolation contract for transactions, ensuring that they

appear to execute in a serial order. Concurrency control is the mechanism that imple-

ments this contract. It regulates the acceptable interleavings of concurrent transactions

and ensures that transactions commit if and only if their execution is serializable.

We broadly classify two approaches to concurrency control (CC): pessimistic and

optimistic CC.
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Pessimistic Concurrency Control Pessimistic Concurrency Control (PCC) assumes

that conflicts between transactions are likely and proactively prevents them by locking

data items before access. This approach ensures that only one transaction can access a

data item at a time, thereby preventing undesirable interleavings. To reduce unnecessary

contention, PCC protocols typically distinguish between shared and exclusive locks:

multiple transactions can concurrently acquire shared locks to read the same data item,

while exclusive locks ensure that only one transaction can write to it at a given time.

The most well-known PCC protocol is Two-Phase Locking (2PL), in which transac-

tions proceed through two distinct phases: a growing phase, during which they acquire

locks, and a shrinking phase, during which they release them. Notably, 2PL allows

transactions to release locks before they commit, which can improve concurrency but

may lead to cascading aborts if other transactions observe the effects of a transaction

that later aborts. Strict Two-Phase Locking (S2PL) is a widely used variant that requires

transactions to hold all exclusive locks until they either commit or abort. This guar-

antees recoverability and prevents cascading aborts but comes at the cost of reduced

concurrency.

While lock-based approaches enforce serializability, they can introduce deadlocks

when concurrent transactions compete for locks in conflicting orders. To resolve dead-

locks, PCC protocols typically implement deadlock detection and resolution mecha-

nisms, such as wait-for graphs, canonical lock ordering, or timestamp based techniques

(e.g., wound-wait and wait-die) [158].

Figure 2.3 illustrates a simple example of two transactions executing under 2PL. The

reads of transactions T1 and T2 may proceed concurrently by acquiring shared locks.

However, when T1 attempts to write, it must obtain an exclusive lock and thus must wait

until the lock becomes available. To avoid deadlock, T2 is forced to yield its lock and
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abort, since T1 has already registered its intent to acquire the exclusive lock.

PCC is often overly conservative, guarding against potential conflicts that may never

materialize. As a result, transactions can unnecessarily block while waiting for locks to

be released, leading to reduced concurrency and degraded performance.

begin1() begin2()

r1(a) → 100

commit1()

r2(a) → 100

w1(a, 0)

commit2()

w2(a, 10)

TS conflict

TS=10 TS=5

begin1() begin2()

r1(a) → 100

w1(a, 0)

r2(a) → 100

w2(a, 10)
wait

commit1()

deadlock

begin1() begin2()

r1(a) → 100

commit1()

r2(a) → 100

w1(a, 0)

commit2()

stale 
read

2PL OCC MVCC  

Figure 2.3: Illustration of conflict detection and resolution accross different concurrency control
protocols.

Optimistic Concurrency Control Optimistic Concurrency Control (OCC), in contrast,

assumes that conflicts between transactions are rare. OCC protocols allow transactions

to execute speculatively without acquiring locks, and detect conflicts only at the end

of execution through an additional validation phase.3 This approach enables higher

concurrency under low contention but can result in wasted work when conflicts do occur,

as conflicting transactions must abort and retry.

In its simplest form, OCC buffers all writes in a transaction until it is ready to com-

mit. At that point, it checks whether any of the data items it read have been modified

3In practice, validation is often piggybacked onto the final write or used to transmit previously buffered
writes.
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by other transactions. If so, the transaction aborts and retries; otherwise, it commits

its writes. Figure 2.3 illustrates a simple example involving two transactions. The

reads of T1 and T2 proceed without blocking, while their writes remain buffered. T1

commits successfully—making its writes visible—after confirming that no concurrent

writes have invalidated its reads. As a result, T2’s validation fails, as its earlier read is

now stale.

More sophisticated OCC protocols incorporate timestamps, versioning, or other

mechanisms to improve performance and reduce conflict likelihood. A widely used

technique is Multi-Version Concurrency Control (MVCC) [20], which maintains multi-

ple versions of each data item. This allows readers and writers to operate concurrently

without blocking: readers access the most recent version as of the transaction’s start

time—effectively working on a consistent snapshot of the database—while writers gen-

erate new versions associated with a timestamp or version number.

Traditionally, MVCC enforces serializability during execution, though some proto-

cols defer it to a validation phase [48, 171, 183]. In either case, writers must ensure that

their updates do not conflict with the snapshots observed by concurrent readers. This

typically involves checking the writer’s timestamp or version number against the read

versions of data items accessed by other transactions. If a conflict is detected, the writ-

ing transaction is aborted and retried. In practice, this is typically done by checking the

timestamp (or version number) of a writing transaction against the snapshots observed

(read-versions—timestamps or version numbers) by concurrent readers. If a conflict is

detected, the transaction is aborted and retried.

MVCC provides high concurrency and avoids many of the drawbacks of locking-

based approaches, such as deadlocks. However, it can lead to increased storage over-

head, since multiple versions of each data item must be maintained. To address this,
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systems rely on garbage collection to reclaim storage from obsolete versions.

Figure 2.3 illustrates the running example under MVCC, using a timestamp-based

conflict resolution strategy: Multiversioned timestamp ordering (MVTSO) [20]. In

MVTSO, each transaction is assigned a timestamp at start time and reads the latest

visible version smaller than its timestamp. A writer must abort if its write violates a

reader’s snapshot—i.e., if the write falls between the version observed by the reader

and the reader’s timestamp. The figure illustrates transaction outcomes both with and

without an optional write by transaction T2.

2.1.3 Transaction Models

Transactions can be implemented in various ways. The choice of transaction model

affects how transactions are executed, how isolation is maintained, and how concurrency

control is enforced. This section briefly summarizes three models that are referenced

throughout the dissertation.

Interactive Transactions This dissertation focuses primarily on interactive (sometimes

called “general”) transactions—i.e., transactions that are interleaved with the client-side

application logic and allow ongoing interaction between the client and the database sys-

tem during execution. This is the most general and widely used transaction model. De-

velopers favor interactive transactions [149] because they simplify programming: only

database requests must be expressed in the database’s domain specific language (DSL),

while control logic stays in application code. This model enables applications to issue

requests dynamically, based on intermediate results or external inputs (e.g., user input,

or real-time feedback). Figure 2.4 illustrates a simple interactive transaction.
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Figure 2.4: Illustration comparing an interactive transaction and one-shot transaction.

One-Shot Transactions One-shot transactions represent a simpler and more restricted

model, in which the entire transaction is processed as a single, self-contained request.

All operations (e.g., SQL statements) are bundled together and sent to the database in a

single message, with no further interaction between client and database during execution

(Fig. 2.4). As the name suggests, one-shot transactions are executed in one shot, and

preclude interaction across multiple servers during execution [95]. This model is well-

suited for simple, predictable transactions, as it minimizes communication overhead by

requiring only a single round-trip. However, it lacks the flexibility and expressiveness

of interactive transactions and is therefore not suitable for general-purpose use.

Stored Procedures Similar to one-shot transactions, stored procedures consist of a pre-

defined sequence of operations executed without interaction between the client and the

database. However, unlike one-shot transactions, the transaction logic resides entirely

on the server side and may support distributed execution across multiple servers [37, 89].

While stored procedures limit user flexibility, they enable efficient runtime execution, as

procedures can be precompiled and optimized by the database system.
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2.2 Building Distributed Databases

Databases must serve requests from many users concurrently, delivering both high

throughput and low latency. To scale beyond the limitations of a single machine, sys-

tems often adopt horizontal scaling by partitioning—or sharding—the database contents

across several machines (called shards).4 Sharding enables load balancing and allows

transactions that access a disjoint set of objects to execute in parallel, thereby increasing

overall system capacity. However, supporting transactions that span multiple shards—

i.e., distributed transactions—requires additional coordination to preserve correctness.

Distributed Transactions To execute distributed transactions safely, the system must

ensure atomic commit: a transaction may only commit if all involved shards deem its

execution serializable and unanimously agree on the outcome. This coordination is

typically handled by a dedicated transaction manager that coordinates a Two-Phase

Commit (2PC) protocol (Fig. 2.5). In the first phase (prepare), the transaction manager

collects a vote on the transaction outcome from each shard and durably logs the vote

tally to survive failures. In the second phase (commit), the manager communicates the

final decision—commit if all shards voted to commit, abort otherwise—to all involved

shards. This ensures that all shards reach a consistent outcome, even in the presence of

partial failures.

While sharding enables systems to scale performance efficiently, scalability alone is

not enough. Many applications also require high availability—often referred to as fault

tolerance—to ensure uninterrupted service. This is particularly critical in real-world

deployments that target multiple “nines” of reliability.

4Some systems also perform logical sharding within a single machine to exploit parallelism across
cores. Unless otherwise specified, this dissertation focuses on physical sharding across machines; the
coordination involved is conceptually similar in both cases.
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Figure 2.5: Life of a distributed transaction. The transaction accesses multiple shards during its
execution and uses Two-Phase Commit (2PC) to ensure atomic commit.

Fault Tolerance To increase resilience to failures (e.g., to maintain availability during

shard outages) database systems often employ replication.5 Instead of operating a sin-

gle machine per shard, the system maintains a redundant set of replicas, each storing

and executing the same data and transactions. We distinguish two common replication

strategies: passive and active replication.

In passive replication, such as the primary-backup model, a single dedicated primary

replica handles all client requests and asynchronously replicates its state to one or more

backup replicas. If the primary fails, a backup is promoted to take over. This approach is

relatively simple and introduces minimal overhead during fault-free operation, but may

suffer from lag or even data loss during failover.

Active replication, by contrast, involves all replicas in processing client requests.

The most prominent approach is State Machine Replication (SMR) [160], where repli-

cas deterministically execute the same operations in the same order—thereby emulating

the abstraction of a single, never-faulty machine. To maintain consistency, replicas first

replicate client requests and agree on a global execution order—typically via a consen-

5Beyond fault tolerance, replication can improve scalability by distributing reads across replicas.
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Figure 2.6: An illustration of State Machine Replication (SMR). Replicas may receive client
requests in different orders, and some requests might not reach all replicas. Before execution,
replicas must first replicate the requests and agree on a common execution order (consensus).

sus protocol—before executing them. While active replication introduces more coordi-

nation overhead in the fault-free case, it offers strong fault tolerance: all replicas remain

consistent and fully up to date, enabling seamless recovery from failures.

Failures in distributed systems vary in nature and severity; Figure 4.11 illustrates a

classic failure hierarchy. The most widely addressed failure category is that of crash

faults, i.e., failures where a machine or process stops executing abruptly and without

warning. A stricter subset of crash faults, called fail-stop, assumes that crashes can re-

liably be detected, or that systems provide an advance warning before failing. Crash

faults can be tolerated using either passive replication, as seen in database systems

like PostgreSQL [78] or MySQL [143] that leverage primary-backup, or using ac-

tive replication via SMR. Examples of the latter include distributed databases such as

Google Spanner [40] or CockroachDB [175], which are built on SMR protocols such as

(Multi-)Paxos [106, 107] or Raft [142].

The next class of failures is omission faults, where nodes may intermittently fail to

send or receive messages. While omission faults are distinct in theory, they are often
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Figure 2.7: Failure hierarchy: Fail stop ⊂ Crash fault ⊂ Omission fault ⊂ Byzantine fault

modeled as crash faults in practice, with timeouts used to detect non-responsiveness.

This dissertation addresses the most general and challenging class: arbitrary failures,

also known as Byzantine faults. In this model, faulty nodes may exhibit any behavior—

including malicious actions such as sending different messages to different participants

(equivocation). Because a primary replica cannot be trusted to behave correctly, only

active replication is a viable solution; passive replication is fundamentally unsuitable

under Byzantine assumptions.

In the following section, we provide an overview of techniques used to provide

Byzantine Fault Tolerance (BFT).

2.3 Byzantine Fault Tolerance (BFT)

Byzantine Fault Tolerance (BFT) enables a distributed system to operate correctly even

in the presence of arbitrarily faulty or malicious participants. This section presents an

overview of BFT, its key challenges, and representative protocols.

Into the Byzantine Empire Byzantine failures are the most general type of failure—

and the most difficult to defend against. The term “Byzantine” originates from the
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(in)famous Byzantine Generals Problem [111], which illustrates the challenge of achiev-

ing agreement in a distributed system where participants (e.g., Byzantine army generals)

may act maliciously or dishonestly. Notably, it shows that in an asynchronous network,6

it is impossible to deterministically reach consensus with fewer than n = 3 f + 1 partici-

pants, where at most f may be faulty. This seminal result forms the foundation of most

Byzantine Fault Tolerance research.

The remainder of this section focuses specifically on Byzantine Fault Tolerant State

Machine Replication (BFT SMR) protocols—i.e., protocols that enable a group of par-

ticipants to agree on a common request order, despite the presence of up to f faulty or

malicious participants. We begin by outlining the system model and its core assump-

tions.

2.3.1 Model and Requirements

This dissertation focuses on BFT protocols that operate under the partial synchrony

model [54]—that is, protocols that guarantee safety at all times (even during periods

of asynchrony), but provide liveness only under favorable, synchronous conditions. In

practice, these protocols use timeouts to approximate intermittent periods of synchrony.

Participants (clients or replicas) that adhere to the protocol are considered correct,

while those that deviate are considered faulty (or Byzantine); the latter may exhibit ar-

bitrary, potentially malicious behavior. To ensure safety, the system requires at least

n = 3 f + 1 replicas, of which at most f may be faulty at any given time. Although the

system does not know which replicas are faulty, the standard model assumes that the set

of faulty replicas is fixed for the duration of execution. That is, any replica that ever

6This impossibility result also holds in synchronous networks unless digital signatures or other cryp-
tographic assumptions are used.
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behaves incorrectly—even if only briefly—is treated as faulty from the outset. While

a faulty replica may alternate between correct and incorrect behavior, the model con-

servatively counts it as faulty throughout. In practice, where faults can be transient and

upredictable, systems approximate this assumption by dividing execution into discrete

epochs using checkpoints. The set of faulty replicas can change across epochs, but the

number of faulty replicas in any single epoch must remain bounded by f .

Most existing BFT protocols assume access to strong cryptographic primitives, such

as unforgeable digital signatures, message authentication codes (MACs), and collision-

and preimage-resistant hash functions. Digital signatures provide non-repudiation: a

sender cannot credibly deny having sent a signed message, which allows BFT protocols

to hold equivocating participants accountable. However, signatures are computationally

expensive; excessive generation and verification can impose significant CPU overhead,

especially as deployments scale to many replicas. To mitigate this overhead, some pro-

tocols use MACs to enable efficient all-to-all communication [30], while others reduce

cost through linear communication patterns and signature aggregation [192].

Formal Properties The core communication primitive underlying State Machine Repli-

cation (SMR) is Atomic Broadcast [33]: it ensures that messages sent by participants (or

processes) in a distributed system are delivered to all participants in the same order, even

in the presence of faulty participants. To maintain consistency across participants, SMR

additionally requires that message processing is deterministic.

Colloquially—and occasionally in this dissertation—the Atomic Broadcast primitive

is also referred to as consensus. Strictly speaking, however, this is technically inaccu-

rate, as consensus formally refers to agreement on a single decision, rather than on an

ordered sequence of messages.
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Concretely, Atomic Broadcast must satisfy the following four properties:

Agreeement If a correct process delivers a message m, then all correct processes

eventually deliver m.

Total Order If two correct processes p and q deliver messages m and m′, then p

delivers m before m′ if and only if q does the same.

Validity If a correct process broadcasts m, it eventually delivers m.7

Integrity A message m is only delivered once, and only if broadcast by its sender.

Collectively, these properties ensure that correct participants (i) make reliable

progress (validity), (ii) do not process unintended operations (integrity), and (iii) process

operations consistently (agreement and total order)—and thus never diverge in state.

Next, we outline some representative BFT SMR protocols.

2.3.2 BFT SMR Examples

We provide a brief overview of two of the most influential and widely adopted BFT

SMR protocols: PBFT [30] and HotStuff [192], which serve as baselines throughout this

dissertation. Representing two generations of BFT-based SMR, these protocols illustrate

distinct approaches to achieving agreement in the presence of Byzantine faults, each

with its own strengths and limitations. We begin by outlining the components common

to both protocols.

Quorum Intersection—The Bread and Butter The foundational concept shared

across all BFT SMR protocols is quorum intersection [125]. The core idea is straight-

forward: reaching agreement on a decision requires a quorum of (authenticated) replica
7Note that validity implicity implies termination.
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votes that constitutes a super majority. This serves two critical purposes. First, this en-

sures that every decision is endorsed by at least one correct replica, guaranteeing that the

proposed operation is well-formed and valid. Second, it ensures mutual exclusion—i.e.,

it prevents two quorums from supporting conflicitng decisions. This property is essen-

tial to establish consistency in the presence of faulty replicas, as it thwarts equivocation

attempts.

Quorum sizes depend both on the total number of replicas and the specific role of the

quorum. The most common type—used to establish mutual exclusion—requires n+ f +1
2

replica votes (e.g., |Q| = 2 f + 1 when n = 3 f + 1). This ensures that any two quorums

Q1 and Q2 intersect in at least f + 1 replicas, meaning that at least one correct replica is

shared between them. Such a replica, by definition, cannot equivocate, and thus prevents

conflicting decisions. Figure 2.8 illustrates this principle.

f+12f+1 2f+1

n = 3f+1

Figure 2.8: Illustration of quorum intersection with f = 2 and n = 3 f + 1. Two quorums of size
2 f +1 must intersect in at least f +1 common replicas, ensuring that at least one correct (green)
replica is shared between them.

Leader driven Every decision begins with a proposal. To streamline agreement, BFT

SMR protocols typically designate a dedicated leader replica responsible for broadcast-

ing the initial proposal. This leader acts as a sequencer to enforce total order, but should

not be confused with a primary in passive replication. Unlike primary-backup protocols,
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BFT SMR requires that all correct replicas agree on a proposal before it is executed.

Leader-based BFT SMR protocols mitigate faulty leaders in two key ways. First,

quorum intersection guarantees that even a faulty leader that equivocates cannot cause

inconsistent decisions, preserving agreement. Second, to maintain liveness, protocols

replace leaders that are faulty or slow. This process, known as a view change, transfers

leadership to a new replica while preserving decisions made under the previous leader’s

term (or view). To ensure that decisions remain durable across views, most protocols

require a second (or sometimes third) communication round before committing a deci-

sion. Eventually, a correct leader is elected, ensuring validity. Integrity is enforced at the

message-level: messages include the sender’s identifier and sequence number, allowing

replicas to detect (and reject) duplicates.

However, leaders remain a performance bottleneck—as all requests must be se-

quenced and broadcast through the leader—and single point of failure, since leader

failures halt all execution. Although view changes eventually restore liveness, no re-

quests can be processed until a (possibly long) timeout expires and a correct leader is

elected. Leaders also raise fairness concerns: a malicious leader can, for example, se-

lectively censor or reorder requests for personal gain (e.g., to carry out a front-running

attack).

PBFT

Practical Byzantine Fault Tolerance [30]—commonly referred to as PBFT—is the most

famous and widely adopted BFT SMR protocol. Its design marked a paradigm shift in

buildig cost-efficient, low-latency consensus systems, and it remains the benchmark for

BFT SMR to this day.
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Common Case PBFT is a leader-based protocol that proceeds in three main phases:

propose,8 prepare, and commit. Figure 2.9 illustrates the agreement process.

CommitProposeRequest Prepare Reply

2f+1 = 
Prepared

2f+1 = 
Committed

f+1

Figure 2.9: An overview of common case processing in PBFT. The fourth replica is faulty and
does not participate.

In the propose phase, the leader broadcasts a request (e.g., the next operation to ex-

ecute) to the other replicas. In the prepare phase, replicas exchange confirmation mes-

sages all-to-all. A replica considers a proposal prepared upon receiving n+ f +1
2 = 2 f + 1

prepare messages (including its own). By quorum intersection, no conflicting proposal

can be accepted (property P1), ensuring that all correct replicas agree on the total order

of requests within the current leader’s view. During the commit phase, replicas broad-

cast their accepted decision once more to ensure durability. Finally, if a replica receives

2 f + 1 matching commit votes, it considers the ordering decision final and executes the

proposed request. It follows that if any correct replica commits to a decision, at least

f + 1 correct replicas must have considered the decision prepared (property P2).

In the fault-free, synchronous case, a leader proposal requires three message delays

to be committed. The end-to-end latency for a client request is therefore (at least) five

message delays—one to send the request, (at least) three for agreement, and one to

8This phase is called pre-prepare in the original PBFT paper [30]; we use propose here for clarity.
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receive the result. Note that a client accepts a result only after receiving f + 1 matching

replies, enough to assert that it was endorsed by at least one correct replica.

View Change If a correct replica fails to reach a decision within a predefined timeout—

either because the leader equivocated, or because the leader or other replicas were

slow—it initiates a view-change to replace the current leader. The replica halts par-

ticipation in the current view and sends a new-view message to the leader of the next

view. This message includes the replica’s current ledger state and the set of prepared

proposals, along with evidence of 2 f + 1 signed prepare messages.

The new leader considers itself elected once it receives 2 f + 1 new-view mes-

sages. To ensure safety, it must recover any decision that could have been committed—

specifically, any proposal that received at least f + 1 prepare votes from correct replicas

(per P2). By quorum intersection, any quorum of size 2 f + 1 must contain at least

one new-view message containing the prepared decision and valid endorsements. Ac-

cording to P1, at most one valid prepare decision can exist in any view, allowing the

leader to safely recover it. If the leader receives valid but conflicting prepare decisions

from different views, it resolves the conflict by choosing the decision from the highest

view—i.e., it breaks ties by preferring more recent views.

Optimizations To amortize agreement costs, PBFT batches multiple client requests

into a single proposal. Additionally, the leader can drive agreement for succeccive

proposals—i.e., those assigned to consecutive ledger positions or slots—in parallel. To

reduce cryptographic overhead, PBFT uses digital signatures only for new-view and

view chage messages, relying on lightweight message authentication codes (MACs) for

all other communication. Finally, to minimize latency, PBFT offers an optional opti-

mization that allows a client to commit upon receiving 2 f + 1 matching tentative results

following the prepare phase, reducing end-to-end latency to four message delays. How-
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ever, this is rarely implemented as it requires replicas to speculatively execute operations

and support state rollbacks if the tentative decision is not preserved across views.

Many subsequent works have extended and improved PBFT. Zyzzyva [101] intro-

duces a fast path that allows clients to commit in only three end-to-end message de-

lays under fault-free conditions; SBFT [80] adopts a similar design but leverages signa-

ture aggregation [29, 45, 163] and linear communication patterns to improve scalability.

Aardvark [35] increases robustness by rotating leaders proactively, while UpRight [34]

reduces BFT overheads by explicitly distinguishing Byzantine and crash failures. Au-

tobahn [73] scales throughput and improves resilience to intermittent failures by decou-

pling data dissemination and agreement—allowing every replica to act as proposers and

streamlining recovery.

HotStuff

PBFT offers low latency but relies on all-to-all communication, leading to quadratic

communication complexity in the common case and cubic complexity for view changes.

HotStuff [192] aims to reduce communication complexity by unifying the view change

with the common case and leveraging symmetry in the voting process. This design

simplifies implementation and achieves linear communication complexity—when using

signature aggregation techniques—though at the cost of increased latency.

HotStuff, like PBFT, is leader-based and follows a similar multiphase protocol, but

introduces an additional pre-commit phase to the common case execution, effectively

integrating the view-change into normal operation. This phase is necessary to achieve

linear communication complexity though it is not strictly required for safety [192]. Hot-

Stuff proceeds through four symmetric phases: propose, prepare, pre-commit, and com-
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mit. Each phase employs a linear communication pattern where the leader collects a set

votes—forming a quorum certificate (QC)—and then broadcasts this certificate to drive

the next phase. Figure 2.10 illustrates this agreement process.

2f+1 = 
precommitQC

CommitProposeRequest Prepare Reply

2f+1 = 
prepareQC

2f+1 = 
commitQC

f+1

PreCommit

new-view

highQC

Request

new-view

Figure 2.10: An overview of common case processing in (non-chained) HotStuff. The fourth
replica is faulty and does not participate.

Inspired by blockchain designs, HotStuff adopts a block-based consensus approach.

Leader proposals are structured as blocks, each containing a cryptographic hash of its

preceeding block, thereby forming a hash-chain that ensures immutability.

Basic HotStuff In HotStuff, each proposal corresponds to a new view. The leader ini-

tiates agreement by proposing a new block (propose phase). In the prepare phase, the

leader collects n+ f +1
2 = 2 f + 1 votes for its proposal and assembles (and forwards) a

prepareQC, ensuring mutual exclusion and preventing equivocation. This process re-

peats in the pre-commit phase, where replicas acknowledge receipt of the prepareQC

and the leader forms and disseminate a precommitQC. Finally, during the commit phase,

the leader gathers and forwards votes that constitute a commitQC. Once replicas receive

the commitQC, they commit the proposed block, advance to the next view, and initiate a

new round of agreement by sending a new-viewmessage to the next leader. If a leader is

slow or faulty, replicas send new-viewmessages after a timeout to trigger a view change
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and maintain liveness.

In the fault-free synchronous case, committing a proposal requires seven message

delays. Including client communication, the end-to-end latency for a request is (at least)

9 message delays. Similar to PBFT, a client only accepts a result upon receiving f + 1

matching replies, ensuring endorsement by at least one correct replica.

HotStuff integrates the view change directly into the common case protocol via sub-

tle voting rules. At the start of each propose phase (a new view), the leader must gather

2 f + 1 new-view messages before proposing a block. To preserve safety, the leader

extends the block with the highest prepareQC (highQC), ensuring the committed chain

never forks. No conflicting proposal from a lower view (not included in the hash chain

of highQC) can have committed. Replicas enforce locking rules to maintain consis-

tency: each replica locks on the highest precommitQC it has observed and only accepts

a new proposal if either (i) the proposal extends the locked block, or (ii) it belongs to a

higher view, guaranteeing that the locked block could not have committed.

Optimizations At first glance, HotStuff still incurs quadratic communication overhead.

However, it can achieve linear complexity through signature aggregation [29, 45, 163],

which compresses each quorum certificate (QC) into a single aggregated signature—

reducing the cost of forwarding a QC to constant. This optimization, however, is rarely

used in practice, as signature aggregation is only resource-efficient in large replication

groups [80] (e.g., n ≥ 100).

To further amortize cryptographic costs and reduce latency between proposals, Hot-

Stuff pipelines multiple agreement rounds by leveraging the symmetry of its voting

phases. Each phase can propose a new block, and a single QC can simultaneously serve

as the prepareQC, precommitQC, and commitQC for consecutive proposals. A block is
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considered committed only when it is certified by three consecutive QCs. Pipelining

can be combined with eager leader rotation [35] by treating each voting phase as a new

view. This approach promotes fairness by distributing proposal responsibilities across

replicas. However, it introduces new liveness vulnerabilites, as successfull committment

now requires three successive correct leaders [74].

Recent follow-up work has sought to reduce HotStuff’s latency by eliminating the

pre-commit phase—either by sacrificing linear communicaton complexity [67, 74, 91],

extending view changes [168, 169], or leveraging novel cryptography techniques [72].

Neverthleess, agreement latency remains high: committing a leader’s proposal still re-

quires at least five message delays, and at end-to-end client confirmation requires at least

seven.

2.4 Distributed Databases—Putting it All Together

Distributed databases consist of many interdependent components. To achieve horizon-

tal scalability, they shard data; to tolerate faults, they replicate it; and to preserve data

integrity, they orchestrate serializable transactions. A common architectural pattern fol-

lows a layered approach, as illustrated in Figure 2.11. At the base lies a replication

layer that employs State Machine Replication (SMR) to ensure consistency, making

each shard appear as a single, fault-tolerant entity. On top of this, each shard runs a con-

currency control (CC) protocol to enforce serializability. Finally, a Two-Phase Commit

(2PC) protocol coordinates atomic transaction commit across shards to guarantee global

correctness.

This architecture is conceptually simple and promotes modularity, allowing each

protocol to be designed independently. The database may be shared in various
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Figure 2.11: A common architecture for distributed databases. A distributed transac-
tion protocol—consisting of Two-Phase Commit and Concurrency Control—is layered atop a
strongly consistent replication protocol. Reproduced from Zhang et al. [195]

ways—or not at all—depending on system requirements. Internally, shards (or

the unsharded database) can be replicated using different protocols: for example,

(Multi-)Paxos [106, 107] or Raft [142] in environments concerned only with crash

faults, or PBFT [30] or HotStuff [192] when Byzantine fault tolerance is required. Like-

wise, systems vary in their choice of concurrency control, with some adopting pes-

simistic approaches like Two-Phase Locking (2PL), while others favor optimistic ap-

proaches such as Multi-Version Concurrency Control (MVCC).

Examples Several widely used production systems follow this classic layered architec-

ture. For example, Google Spanner [40] combines 2PL for read-write transactions with

MVCC for snapshot reads. It uses (Multi-)Paxos for replication and employs 2PC to

ensure atomicity for distributed transactions. Modern cloud-native databases like Cock-

roachDB [37, 175], YugabyteDB [89] and TiDB [86, 153] adopt a similar architectural

approach, but build atop Raft [142] for replication. They layer MVCC and 2PC atop

Raft to provide strong consistency guarantees and scalable transaction processing.

Shortcomings of Layered Designs Modularity, while convenient, comes at a cost: each

layer enforces consistently independently—sometimes redundantly—leading to ineffi-

ciencies [195, 196]. The concurrency control layer enforces serializability, ensuring that
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transactions appear to execute in a total order. Meanwhile, the replication layer imposes

its own global ordering on all transaction operations (within a shard) to maintain con-

sistency across replicas. Unfortunately, this redundant enforcement of ordering strips

away much of the natural parallelism inherent to transaction processing, significantly

constraining overall system performance.

Ordering can also incur substantial latency, especially in Byzantine settings. For in-

stance, PBFT requires at least four message delays before a request can be processed;

one for the transaction coordinatior (e.g., the client) to submit the request, and at least

three more for the replicas to reach agreement and commit. Additionally, ordering de-

pends on a leader, which can become a throughput bottleneck. Layering 2PC atop repli-

cation further amplifies this cost, since each round of the 2PC protocol must itself be

totally ordered within every involved shard.

In practice, these latency overheads make interactive transactions impractical in

Byzantine fault tolerant systems. As a result, most existing BFT systems restrict

their transaction model to one-shot transactions or pre-defined stored procedures—often

called smart contracts in blockchain contexts [7, 8, 16, 198].

Integrating Layers Recent work observes that not all operations require total ordering

and investigates the minimal ordering requirements necessary to ensure consistency in

distributed databases [148, 195, 196].

For example, under optimistic concurrency control, reads do not modify replica state

and therefore need not be replicated or ordered. In crash fault tolerant settings, this

allows reads to be served from a single—possibly local—replica, improving latency.

In contrast, locking-based approaches require total ordering to maintain consistency,

making them less favorable performance-wise. We note that total ordering does not
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necessarily imply replication: locking-based systems such as Google Spanner register

reads at a leader replica for ordering but do not replicate them. However, this still

introduces additional coordination and at least one round-trip delay.

TAPIR [195] explores the design of a crash fault tolerant distributed database that

provides strong transaction-level consistency (serializability) while relaxing consistency

requirements at the replication layer. Specifically, TAPIR introduces a novel primitive

called inconsistent replication, which allows replicas to execute transactions in any or-

der. It distinguishes between inconsistent operations, which can execute out of order

without requiring agreement but require replication (e.g., writes in a multi-versioned

system), and consensus operations, which also execute out of order but require agree-

ment on their result (e.g., transaction validation checks). Notably, TAPIR avoids repli-

cating reads altogether, relying instead on concurrency control to ensure end-to-end

consistency.

Several systems have built upon this design, most notably Meerkat [174], which ac-

celerates TAPIR by minimizing cross-core coordination within replicas, and Morty [28],

which combines inconsitent replication and dynamic transaction re-execution to achieve

high performance even in wide-area deployments.

This dissertation Despite significant progress in scaling crash fault tolerant (CFT)

database systems, Byzantine fault tolerant (BFT) systems today continue to rely on

total ordering. As a result, they either offer performance that falls short of their CFT

counterparts or impose restrictive transaction models—making them ill-suited as drop-

in replacements for existing CFT systems or as general-purpose platforms for distributed

applications.

This dissertation aims to design and build BFT distributed databases that not only
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compete with CFT systems in performance but also support rich, expressive transaction

interfaces—such as interactive transactions—that developers prefer. More specifically,

it investigates whether the cross-layer design principles proven effective in CFT systems

can be extended to the Byzantine setting, and whether doing so can yield practical and

efficient systems. Realizing this goal is not straighftoward. For example, even a sim-

ple read poses a challenge: unlike in CFT settings, a single replica cannot be trusted,

so some form of replication is inherently required. Similarly, optimistic concurrency

control is typically client-driven, yet Byzantine clients cannot be trusted to uphold cor-

rectness or liveness—for instance, they may ignore transaction conflicts or intentionally

roll back their writes to cause cascading transaction aborts.

In the chapters that follow, we explore how to build database-first BFT systems that

avoid total ordering and coordinate only when necessary, opening a new design space

for efficient and expressive BFT transaction processing.
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CHAPTER 3

BASIL: BREAKING UP BFT WITH ACID (TRANSACTIONS)

The previous chapter established the background on distributed transaction systems

and Byzantine fault tolerance (BFT). This chapter presents Basil1—a leaderless and

shardable transactional key-value store that scales the abstraction of a BFT totally or-

dered log while simultaneously increasing robustness.

The context Byzantine fault tolerant (BFT) systems enable safe online data sharing

among mutually distrustful parties by guaranteeing correctness even in the presence

of malicious (Byzantine) actors. These platforms open exciting opportunities across

various domains, including healthcare [118], financial services [13, 58, 87], and supply

chain management [47, 186]. At the core of these services are BFT replicated state

machines [30, 35, 80, 101, 192] and permissioned blockchains [7, 8, 16, 27, 71, 98],

which ensure that mutually distrustful parties agree on the same totally ordered log of

operations.

The abstraction of a totally ordered log is appealingly simple. A scalable totally

ordered log, however, is not only hard to implement (processing all requests sequentially

can become a bottleneck), but also often unnecessary. Most distributed applications

primarily consist of logically concurrent operations; supply chains for instance, despite

their name, are actually complex networks of independent transactions.

Some BFT systems use sharding to try to tap into this parallelism. Transactions that

access disjoint shards can execute concurrently, but operations within each shard are still

totally ordered. Transactions involving multiple shards are instead executed by running

cross-shard atomic commit protocols, which are layered above these totally ordered

1Despite (or because of) his deeply Fawlty character, Basil managed to rise first from peasant to
Byzantine emperor (867-886) and then to hotel owner (1975-1979).
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shards [7, 98, 145, 146, 194]. The drawbacks of systems that adopt this architecture are

known: (i) they pay the performance penalty of redundant coordination—both across

shards (to commit distributed transactions) and among the replicas within each shard

(to totally order in-shard operations) [138, 195, 196]; (ii) within each shard, they give a

leader replica undue control over the total order ultimately agreed upon, raising fairness

concerns [85, 192, 197]; (iii) and often they restrict the expressiveness of the transactions

they support [145, 146] by requiring that their read and write set be known in advance.

Our proposal In this dissertation, we advocate a more principled, performant, and ex-

pressive approach to supporting the abstraction of a totally ordered log at the core of all

permissioned blockchain systems. We make our own the lesson of distributed databases,

which successfully leverage generic, interactive transactions to implement the abstrac-

tion of a sequential, general-purpose log. These systems specifically design highly con-

current protocols that are equivalent to a serial schedule [22, 147]. Byzantine data pro-

cessing systems need be no different: rather than aiming to sequence all operations, they

should decouple the abstraction of a totally ordered sequence of transactions from its

implementation. Thus, we flip the conventional approach: instead of building database-

like transactions on top of a sharded, totally ordered BFT log, we directly build out

this log abstraction above a partially-ordered distributed database, where total order is

demanded only for conflicting operations.

Basil, at glance To this effect, we design Basil, a serializable BFT key-value store that

implements the abstraction of a trusted shared log, whose novel design addresses each

of the drawbacks of traditional BFT systems: (i) it borrows databases’ ability to leverage

concurrency control to support highly concurrent but serializable transactions, thereby

adding parallelism to the log; (ii) it sidesteps concerns about the fairness of leader-based

systems by giving clients the responsibility of driving the execution of their own trans-
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actions; (iii) it eliminates redundant coordination by integrating distributed commit with

replication [138, 195], so that, in the absence of faults and contention, transactions can

return to clients in a single round trip; and (iv) it improves the programming API, offer-

ing support for general interactive transactions that do not require a-priori knowledge of

reads and writes.

We lay the foundations for Basil by introducing two complementary notions of cor-

rectness. Byzantine isolation focuses on safety: it ensures that correct clients observe a

state of the database that could have been produced by correct clients alone. Byzantine

independence instead safeguards liveness: it limits the influence of Byzantine actors in

determining whether a transaction commits or aborts. To help enforce these two no-

tions, and disentangle correct clients from the maneuvering of Byzantine actors, Basil’s

design follows the principle of independent operability: it enforces safety and liveness

through mechanisms that operate on a per-client and per-transaction basis. Thus, Basil

avoids mechanisms that enforce isolation through pessimistic locks (which would allow

a Byzantine lock holder to prevent the progress of other transactions), adopting instead

an optimistic approach to concurrency control.

Embracing optimism in a Byzantine setting comes with its own risks. Optimistic

concurrency control (OCC) protocols [20, 104, 156, 187, 195] are intrinsically vulnera-

ble to aborting transactions if they interleave unfavorably during validation, and Byzan-

tine faults can compound this vulnerability. Byzantine actors may, for instance, inten-

tionally return stale data, or collude to sabotage the commit chances of correct clients’

transactions. Consider multiversioned timestamp ordering (MVTSO) [20, 156], which

allows writes to become visible to other operations before a transaction commits. While

this choice helps reduce abort rates for contended workloads, it can cause transactions

to stall on uncommitted operations.
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Basil’s ethos of independent operability is key to mitigating this issue. The system

implements a variant of MVTSO that prevents Byzantine participants from unilaterally

aborting correct clients’ transactions and includes a novel fallback mechanism that em-

powers clients to finish pending transactions issued by others, while preventing Byzan-

tine actors from dictating their outcome. Importantly, this fallback is a per-transaction

recovery mechanism: thus, unlike traditional BFT view-changes, which completely sus-

pend the normal processing of all operations, it can take place without blocking non-

conflicting transactions.

The benefits Our results are promising: on TPC-C [182], Smallbank [50], and a Retwis-

based workload [113, 195], Basil’s throughput is 3.5-5x higher than layering distributed

commit over totally ordered shards running BFT-SMaRt, a state-of-the-art PBFT im-

plementation [23] and HotStuff [192] (Facebook Diem’s core consensus protocol [16]).

BFT’s cryptographic demands, however, still cause Basil to be 2-4 times slower than

TAPIR, a recent non-Byzantine distributed database [195]. In the presence of Byzan-

tine clients, Basil’s performance degrades gracefully: with 30% Byzantine clients, the

throughput of Basil’s correct clients drops by less than 25% in the worst-case.

In summary, this chapter makes the following three contributions:

1. It introduces the complementary correctness notions of Byzantine isolation and

Byzantine independence.

2. It presents novel concurrency control, agreement, and fallback protocols that bal-

ance the desire for high-throughput in the common case with resilience to Byzan-

tine attacks.

3. It describes Basil, a BFT database that guarantees Byz-serializability while pre-

serving Byzantine independence. Basil supports interactive transactions, is lead-

erless, and achieves linear communication complexity.
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Roadmap This chapter is structured as follows. Section 3.1 formalizes Basil’s correct-

ness guarantees. Section 3.2 outlines Basil’s architecture. We detail our concurrency

control protocols and recovery protocols in Section 3.3 and Section 3.4; Section 3.5

proves their correctness. We evaluate Basil in Section 3.6, discuss related work in Sec-

tion 3.8, and conclude in Section 3.9.

3.1 Model and Definitions

We introduce the complementary and system-independent notions of Byzantine isola-

tion and Byzantine independence, which, jointly formalize the degree to which a Byzan-

tine actor can affect transaction progress and safety.

3.1.1 System Model

Basil inherits the standard assumptions of prior BFT work. A participant is considered

correct if it adheres to the protocol specification, and faulty otherwise. Faulty clients

and replicas may deviate arbitrarily from their specification; a strong but static adversary

can coordinate their actions but cannot break standard cryptographic primitives. A shard

contains a partition of the data in the system.

We assume that the number of faulty replicas within a shard does not exceed a thresh-

old f and that an arbitrary number of clients may be faulty; we make no further assump-

tion about the pattern of failures across shards. We assume that applications authenticate

clients and can subsequently audit their actions.

Similar to other BFT systems [27, 30, 35, 59, 101], Basil makes no synchrony as-
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sumption for safety but for liveness [59] depends on partial synchrony [54].

Basil also inherits some of the limitations of prior BFT systems: it cannot prevent

authenticated Byzantine clients, who otherwise follow the protocol, from overwriting

correct clients’ data. Basil does not enforce whether authenticated clients adhere the in-

tended application semantics. A Byzantine client, for example, might violate the seman-

tics of payment transaction and "double-spend" funds. We assume that authenticated

clients can be held accountable by an external service audits committed transactions

after the fact.

We additionally assume that, collectively, Byzantine and correct clients have simi-

lar processing capabilities, and thus Byzantine clients cannot cause a denial of service

attack by flooding the system.

3.1.2 System Properties

To express Basil’s correctness guarantees, we introduce the notion of Byzantine iso-

lation. Database isolation (serializability, snapshot isolation, etc.) traditionally regu-

lates the interaction between concurrently executing transactions; Byzantine isolation

ensures that, even though Byzantine actors may choose to violate ACID semantics for

themselves, the state observed by correct clients will always be ACID compliant.

We start from the standard notions of transactions and histories introduced by Bern-

stein et al. [21]. We summarize them here and defer a more formal treatment to our

correctness proofs (§ 3.5). A transaction T contains a sequence of read and write opera-

tions terminating with a commit or an abort. A history H is a partial order of operations

representing the interleaving of concurrently executing transactions, such that all con-
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flicting operations are ordered with respect to one another. Additionally, let C be the

set of all clients in the system; Crct ⊆ C be the set of all correct clients; and Byz ⊆ C

be the set of all Byzantine clients. A projection H|C is the subset of the partial order of

operations in H that were issued by the set of clients C . We further adopt standard defi-

nitions of database isolation: a history satisfies an isolation level I if the set of operation

interleavings in H is allowed by I. Drawing from the notions of BFT linearizability [122]

and view serializability [21], we then define the following properties:

Definition (Legitimate History) History H is legitimate if it was generated by correct

participants, i.e., H = HCrct.

Definition (Correct-View Equivalent) History H is correct-view equivalent to a his-

tory H′ if all operation results, commit decisions, and final object values in H|Crct match

those in H′.

Definition (Byz-I) Given an isolation level I, a history H is Byz-I if there exists a

legitimate history H′ such that H is correct-view equivalent to H′ and H′ satisfies I.

This definition is not Basil-specific, but captures what it means, for any Byzantine-

tolerant database, to enforce the guarantees offered by a given isolation level I. Infor-

mally, it requires that the states observed by correct clients be explainable by a history

that satisfies I and involves only correct participants. It intentionally makes no assump-

tions on the states that Byzantine clients choose to observe.

Basil specifically guarantees Byz-serializability: correct clients will observe a se-

quence of states that is consistent with a sequential execution of concurrent transac-

tions. This is a strong safety guarantee, but it does not enforce application progress;

a Byz-serializable system could still allow Byzantine actors to systematically abort all

transactions. We thus define the notion of Byzantine independence, a general system
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property that bounds the influence of Byzantine participants on the outcomes of correct

clients’ operations.

Definition (Byzantine Independence) For every operation o issued by a correct

client c, no group of participants containing solely Byzantine actors can unilaterally

dictate the result of o.

In a context where clients issue transaction operations, Byzantine independence im-

plies, for instance, that Byzantine actors cannot collude to single-handedly abort a cor-

rect client’s transaction. This is a challenging property to enforce. It cannot be attained

in a leader-based system: if the leader and a client are both Byzantine, they can col-

lude to prevent a transaction from committing by strategically generating conflicting

requests. In contrast, Basil can enforce Byzantine independence as long as Byzantine

actors do not have full control of the network, a requirement that is in any case a pre-

condition for any BFT protocol that relies on partial synchrony [59, 132]. We prove in

Section 3.5 that:

Theorem 1 Basil maintains Byz-serializability.

Theorem 2 Basil maintains Byzantine independence in the absence of a network adver-

sary.

Basil is designed for settings where Byzantine attacks can occur, but are infrequent,

consistent with the prevalent assumption for permissioned blockchains today; namely,

that to maintain standing in a permissioned system, clients are unlikely to engage in

actively detectable Byzantine behavior [81, 82] and, if they cannot break safety unde-

tected, it is preferable for them to be live [124]. We design Basil to be particularly effi-

cient during gracious executions [35] (i.e., synchronous and fault-free) while bounding

overheads when misbehavior does occur. In particular, we design aggressive concur-
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rency control mechanisms that maximize common case performance by optimistically

exposing uncommitted operations, but ensure that these protocols preserve independent

operability, so that Basil can guarantee continued progress under Byzantine attacks [35].

We confirm this experimentally in Section 3.6.

3.2 Overview

Basil is a transactional key-value store designed to be scalable and leaderless. Our

architecture reflects this ethos.

Execution Phase

2 Phase Commit

Begin Read Write
Try 

Commit 

Prepare Phase Writeback Phase

Stage 1 Stage 2
(Optional)

Writeback
(Async)

Transaction Processing

Client Latency Start Client Latency End

Return to Client

Figure 3.1: Basil Transaction Processing Overview

Transaction Processing Transaction processing is driven by clients (avoiding costly

all-to-all communications amongst replicas) and consists of three phases (Figure 3.1).

First, in an Execution phase, clients execute individual transactional operations. As

is standard in optimistic databases, reads are submitted to remote replicas while writes

are buffered locally. Basil supports interactive and cross-shard transactions: clients can

issue new operations based on the results of past operations to any shard in the system.

In a second Prepare phase, individual shards are asked to vote on whether commit-

ting the transaction would violate serializability. For performance, Basil allows individ-

ual replicas within a shard to process such requests out of order. For progress, Basil
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must ensure that Byzantine replicas cannot cause transactions to abort arbitrarily.

Finally, the client aggregates each shard vote to determine the outcome of the trans-

action, notifies the application of the final decision, and forwards the decision to the

participating replicas in an asynchronous Writeback phase. Importantly, the decision of

whether each transaction commits or aborts must be preserved across both benign and

Byzantine failures. We describe the protocol in detail in Section 3.3.

Transaction Recovery A Byzantine actor could begin executing a transaction, run the

prepare phase, but intentionally never reveal its decision. Such behavior could pre-

vent other transactions from making progress. Basil thus implements a fallback re-

covery mechanism (§ 3.4) that can terminate stalled transactions while preserving Byz-

serializability. This protocol, in the common case, allows clients to terminate stalled

transactions in a single additional round-trip.

Replication Basil uses n = 5 f +1 replicas for each shard. This choice allows Basil to (i)

preserve Byzantine independence (ii) commit transactions in a single round-trip in the

absence of contention, and (iii) reduce the message complexity of transaction recovery

by a factor of n—all features which would be unattainable with a lower replication

factor. We expand on this further in Sections 3.3.6, 3.4, and 3.7.6.

3.3 Transaction Execution

Basil takes as its starting point MVTSO [20], an optimistic multiversioned concurrency

control, and modifies it in three ways: (i) in the spirit of independent operability, it

has clients drive the protocol execution; (ii) it merges concurrency control with repli-

cation; and finally (iii) it hardens the protocol against Byzantine attacks to guarantee

51



Byz-serializability while preserving Byzantine independence.

Traditional MVTSO works as follows. A transaction T is assigned (usually by a

transaction manager or scheduler) a unique timestamp tsT that determines its serializa-

tion order. As MVTSO is multiversioned, writes in T create new versions of the objects

they touch, tagged with tsT . Reads instead return the version of the read object with

the largest timestamp smaller than tsT and update that object’s read timestamp (RTS) to

tsT . Read timestamps are key to preserving serializability: to guarantee that no read will

miss a write from a transaction that precedes it in the serialization order, MVTSO aborts

all writes to an object from transactions whose timestamp is lower than the object’s RTS.

MVTSO is an optimistic protocol, and, as such, much of its performance depends

on whether its optimistic assumptions are met. For example, it uses timestamps to as-

sign transactions a serialization order a-priori, under the assumption that those times-

tamps will not be manipulated; further, it allows read operations to become dependent

on values written by ongoing transactions under the expectation that they will commit.

This sunny disposition can make MVTSO particularly susceptible to Byzantine attacks.

Byzantine clients could use artificially high timestamps to make lower-timestamped

transactions less likely to commit; or they could simply start transactions that write

to large numbers of keys and never commit them: any transaction dependent on those

writes would be blocked too. At the same time, by blocking on dependencies (rather

than summarily aborting, as OCC would do) MVTSO leaves open the possibility that

blocked transactions may be rescued and brought to commit. In the remainder of this

section, we describe how Basil, capitalizing on this possibility, modifies MVTSO to

harden it against Byzantine faults.
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3.3.1 Execution Phase

Begin() A client begins a transaction T by optimistically choosing a timestamp ts B

(Time, ClientID, ClientSeqNo) that defines a total serialization order across all clients.

Allowing clients to choose their own timestamps removes the need for a centralized

scheduler, but makes it possible for Byzantine clients to create transactions with ar-

bitrarily high timestamps: objects read by those transactions would cause conflicting

transactions with lower timestamps to abort. To defend against this attack, replicas ac-

cept transaction operations if and only if their timestamp is no greater than RTime + δ,

where RTime is the replica’s own local clock. Neither Basil’s safety nor its liveness de-

pend on the specific value of δ, though a well-chosen value will improve the system’s

throughput. In practice, we choose δ based on the skew of NTP’s clock and average

client-replica ping latency. We discuss in Section 3.7 some alternative mechanisms to

curb misbehavior.

Write(key,value) Writes from uncommitted transactions raise a dilemma. Making them

readable empowers Byzantine clients to stall all transactions that come to depend on

them. Waiting to disclose them only when the transaction commits, however, increases

the likelihood that concurrent transactions will abort. We adopt a middle ground: we

buffer writes locally at clietns until the transaction has finished execution, and make

them visible during the protocol’s Prepare phase (we call such writes prepared). This

approach allows us to preserve much of the performance benefits of early write disclo-

sure while enforcing independent operability (§ 3.3.2).

Read(key) In traditional MVTSO, a read for transaction T returns the version of the

read object with the highest timestamp smaller than tsT . When replicas process requests

independently, this guarantee no longer holds, as the write with the largest timestamp

smaller than tsT may have been made visible at replica R, but not yet at R′: reading
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from the latter may result in a stale value. Hence, to ensure serializability, transactions

in Basil go through a concurrency control check at each replica as part of their Prepare

phase (§ 3.3.2). Further care is required, as Byzantine replicas could intentionally return

stale (or imaginary!) values that would cause transactions to abort, violating Byzantine

independence. These considerations lead us to the following read logic:

1: C→ R: Client C sends read request to replicas.

C sends an authenticated read request m B 〈read, key, tsT 〉 to at least 2 f + 1 replicas

in the shard S that is responsible for key.

2: R→ C: Replica processes client read and replies.

Each replica R verifies that the request’s timestamp is smaller than RTime +δ. If not, it

ignores the request; otherwise, it updates key’s RTS to tsT . Unlike traditional MVTSO,

the RTS in Basil is not required for safety but serves as an optimization that improves

the commit chances of readers (§ 3.3.3). Basil may opt to evict clients with a history of

reading keys but never committing the transaction.

Next, R returns a signed message 〈Committed, Prepared〉σR that contains, respec-

tively, the latest committed and prepared versions of key at R with timestamps smaller

than tsT . Committed ≡ (version, c-cert) includes a commit certificate c-cert (§ 3.3.3)

proving that version has committed, while Prepared ≡ (version, idT ′) includes a digest

identifier for the transaction T ′ that created version.

3: C← R: Client receives read replies.

A client waits for at least f + 1 replies (to ensure that at least one comes from a cor-

rect replica) and chooses the highest-timestamped version that is valid. For committed

versions, the criterion for validity is straightforward: a committed version must contain

a valid c-cert, proving that the write is indeed committed. For prepared versions instead,
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we require that the same version be returned by at least f + 1 replicas. This ensures that

at least one correct replica (i) has applied the write and expects it to commit, and (ii)

is in possession of the writer’s full transaction object and can aid in Basil’s cooperative

fallback protocol (§ 3.4).

Both the validity and timestamp requirement are important for Byzantine indepen-

dence. Message validity protects the client’s transaction from becoming dependent on

a version fabricated by Byzantine replicas; and, by choosing the valid reply with the

highest-timestamp, the client is certain to never read a version staler than what it could

have read by accessing a single correct replica.

The client then adds the selected (key, version) to ReadSetT . If version was prepared

but not committed, it adds a new write-read dependency to the dependency set DepT .

Specifically, the client adds to DepT a tuple (version, idT ′), which will be used during

T ’s Prepare phase to assert that T is claiming a legitimate dependency, and that the read

remains valid. T cannot commit unless all the transactions in DepT commit first.

After T has completed execution, the application tells the client whether it should

abort T or instead try to commit it:

Abort() The client asks replicas to remove its read timestamps from all keys in

ReadSetT . No actions need to be taken for writes, as Basil buffers writes during exe-

cution.

Commit() The client initiates the Prepare phase, discussed next, which performs the first

phase of the multi-shard two-phase commit (2PC) protocol that Basil uses to commit T .
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3.3.2 Prepare Phase

To preserve independent operability, Basil delegates the responsibility for coordinating

the 2PC protocol to clients. For a given transaction T , the protocols begins with a

Prepare phase, which consists of two stages (Figure 3.1).

In stage st1, the client collects commit or abort votes from each shard that T ac-

cesses. Determining the vote of a shard in turn requires collecting votes from all the

shard’s replicas. To avoid the overhead of coordinating replicas within a shard, Basil

lets each replica determine its vote independently, by running a local concurrency con-

trol check. The flip side of this design is that, since transactions may reach replicas in

different orders, even correct replicas within the same shard may not necessarily reach

the same conclusion about T . A client C thus tallies replica votes to learn the vote of

each shard and, based on how shards voted, decides whether T will commit or abort.

Stage st2 ensures that C’s decision is made durable (or logged) across failures. C

logs the evidence on only one shard. In the absence of contention or failures, Basil’s fast

path guarantees that T ’s decision is already durable, and this explicit logging step can

be omitted, allowing clients to return a commit or abort decision in just a single round

trip.

Stage 1: Aggregating votes

1: C→ R: Client sends an authenticated st1 request to all replicas in S .

The message format is st1 := 〈prepare,T 〉, where T consists of the transaction’s

metadata B tsT , ReadSetT , WriteSetT , DepT , and of its identifier idT . To ensure Byzan-

tine clients neither spoof the list of involved shards nor equivocate T ’s contents, idT is a

cryptographic hash of T ’s metadata.
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2: R ← C: Replica R receives a st1 request and executes the concurrency control

check.
Traditional, non-replicated, MVTSO does not require any additional validation at

commit time, as transactions are guaranteed to observe all the writes that precede them

in the serialization order (any “late” write is detected by read timestamps and the cor-

responding transaction is aborted). This is no longer true in a replicated system: reads

could have failed to observe a write performed on a different replica. Basil thus runs

an additional concurrency control check to determine whether a transaction T should

commit and preserve serializability (Algorithm 1). It consists of seven steps:

Algorithm 1 MVTSO-Check(T )
1: if tsT > localClock + δ
2: return Vote-Abort
3: if ∃ invalid d ∈ DepT

4: return Vote-Abort
5: for ∀key, version ∈ ReadSetT

6: if version > tsT return MisbehaviorProof
7: if ∃T ′ ∈ Committed ∪ Prepared : key ∈ WriteSetT ′

∧ version < tsT ′ < tsT

8: return Vote-Abort, optional: (T ′, T ′.c-cert)
9: for ∀key ∈ WriteSetT

10: if ∃T ′ ∈ Committed ∪ Prepared :
ReadSetT ′[key].version < tsT < tsT ′

11: return Vote-Abort, optional: (T ′, T ′.c-cert)
12: if ∃RTS ∈ key.RTS : RTS > tsT

13: return Vote-Abort
14: Prepared.add(T )
15: wait for all pending dependencies
16: if ∃ d ∈ DepT : d.decision = Abort
17: Prepared.remove(T )
18: return Vote-Abort
19: return Vote-Commit

1 T ’s timestamp is within the R’s time bound (Lines 1-2).

2 T ’s dependencies are valid: R has either prepared or committed every transaction

identified by T ’s dependencies, and the versions that caused the dependencies were
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produced by said transactions (Lines 3-4). This ensures that Byzantine clients cannot

claim fabricated dependencies that cannot be recovered by the fallback protocol.2 To

limit the impact of cascading aborts, a replica may opt to also reject a transaction whose

dependency depth is too high, i.e., dependencies that are waiting on dependencies of

their own (and so forth).

3 Reads in T did not miss any writes. Specifically, the algorithm (Lines 7-8) checks

that there does not exist a write from a committed or prepared transaction T ′ that (i) is

more recent than the version that T ’s read and (ii) has a timestamp smaller than tsT

(implying that T should have observed it).

4 Writes in T do not cause reads in other prepared or committed transactions to miss a

write (Lines 9-11).

5 Writes in T do not cause reads in ongoing transactions to miss a write: T is aborted

if there exists an RTS greater than tsT (Lines 12-13). This check is optional, and not

required for safety; it increases the commit chances of reads.

6 T is prepared and made visible to future reads (Line 14).

7 All transactions responsible for T ’s dependencies have reached a decision. R votes

to commit T only if all of its dependencies commit; otherwise it votes to abort (Lines

15-19). Aborts caused by cascading dependencies are implicitly durable: R unprepares

T and resolves its respective dependents (transactions that depend on T ).

3: R→ C: Replica returns its vote in a st1r message.

After executing the concurrency control check, each replica returns to C a Stage 1

reply st1r:= 〈idT , vote〉σR . A correct replica executes this check at most once per trans-

action and stores its vote to answer future duplicate requests (§ 3.4).

2An alternative option is for clients to include the quorum of prepared writes as proof of the depen-
dencies’ legitimacy. This allows replicas to accept dependencies that have not been locally observed, at
the cost of additional message overhead and signature verification.
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4: C← R: The client tallies replica votes.

C waits for st1r messages from the replicas of each shard S touched by T . Based

on these replies, C determines (i) whether S voted to commit or abort; and (ii) whether

the received st1r messages constitute a vote certificate (v-cert B 〈idT , S , vote, {st1r}〉)

that proves S ’s vote to be durable. A shard’s vote is durable if its original outcome can

be independently retrieved and verified at any time by any correct client, independent of

Byzantine failures or attempts at equivocation. If so, we dub shard S fast; otherwise, we

call it slow. Votes from a slow shard do not amount to a vote certificate, but simply to a

vote tally. Though vote tallies have the same structure as a v-cert, the information they

contain is insufficient to make S ’s vote durable. An additional stage (st2) is necessary

to explicitly make S’s vote persistent.

Specifically, C proceeds as follows, depending on the set of st1r messages it re-

ceives (Table 3.1 summarizes the results):

Vote Tally Decision Durable
3 f + 1 ≤ Commit votes < 5 f + 1 Commit 7

f + 1 ≤ Abort votes < 3 f + 1 Abort 7

5 f + 1 Commit votes Commit 3

3 f + 1 ≤ Abort votes Abort 3

c-cert for a conflicting transaction Abort 3

Table 3.1: Summary of vote tally outcomes.

(1) Commit Slow Path (3 f + 1 ≤ Commit votes < 5 f + 1): The client has received

at least a CommitQuorum (CQ) of votes, where |CQ| =
n+ f +1

2 = 3 f + 1, in favor of

committing T . Intuitively, the size of CQ guarantees that two conflicting transactions

cannot both commit, since the correct replica that is guaranteed to exist in the overlap

of their CQs will enforce isolation. However, C receiving a CQ of Commit votes is

not enough to guarantee that another client C′, verifying S ’s vote, would see the same

number of Commit votes: after all, f of the replicas in the CQ could be Byzantine, and

59



provide a different vote if later queried by C′. C thus adds S to the set of slow shards,

and records the votes it received in the following vote tally: 〈idT , S ,Commit, {st1r}〉

where {st1r} is the set of matching (Commit) st1r replies.

(2) Abort Slow Path ( f + 1 ≤ Abort votes < 3 f + 1): A collection of f + 1 Abort

votes constitutes the minimum AbortQuorum (AQ), i.e., the minimal evidence sufficient

for the client to count S ’s vote as Abort in the absence of a conflicting c-cert. Requir-

ing an AbortQuorum of at least f + 1 preserves Byzantine independence: Byzantine

replicas alone cannot cause a transaction to abort, as at least one correct replica must

have found T to be conflicting with a prepared transaction. However, such AQ’s are

not durable; a client other than C might observe fewer than f abort votes and receive a

CQ instead. C therefore records the votes collected from S in the following vote tally:

〈idT , S , Abort, {st1r}〉 and adds S to the slow set for T .

(3) Commit Fast Path (5 f + 1 Commit votes): No replica reports a conflict. Further-

more, a unanimous vote ensures that, since correct replicas never change their vote, any

client C′ that were to step in for C would be guaranteed to observe at least a CQ of 3 f +1

Commit votes. C′ may miss at most f votes because of asynchrony, and at most f more

may come from equivocating Byzantine replicas. C thus records the votes collected

from S in the following v-cert: 〈idT , S ,Commit, {st1r}〉 and dubs S fast.

(4) Abort Fast Path (3 f +1 ≤ Abort votes): T conflicts with a prepared, but potentially

not yet committed transaction. S ’s Abort vote is already durable: since a shard votes

to commit only when at least 3 f + 1 of its replicas are in favor of it, once C observes

3 f + 1 replica votes for Abort from S , it is certain that S will never be able to produce

3 f + 1 Commit votes, since that would require a correct replica to change its st1r vote

or equivocate. C therefore creates a v-cert 〈idT , S , Abort, {st1r}〉, and adds S to the set

of fast shards.
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(5) Abort Fast Path (One Abort with a c-cert for a conflicting transaction T ′):

C validates the integrity of the c-cert and creates the following v-cert for S :

〈idT , S , Abort, idT ′ , c-cert〉. It indicates that S voted to abort T because T conflicts

with T ′, which, as c-cert proves, is a committed transaction. Since c-cert is durable, C

knows that the conflict can never be overlooked and that S ’s vote cannot change; thus,

it adds S to the set of fast shards.

After all shards have cast their vote, C decides whether to commit (if all shards

voted to commit) or abort (otherwise). Either way, it must make durable the evidence on

which its decision is based. As we discussed above, the votes of fast shards already are;

if (i) there are no slow shards, or (ii) a single fast shard voted abort, then, C can move

directly to the Writeback Phase (§ ??): this is Basil’s fast path, which allows C to return

a decision for T after a single message round trip. If some shards are in the slow set,

however, C needs to take an additional step to make its tentative 2PC decision durable

in a second phase (st2).

Notably though, Basil does not need each slow shard to log its corresponding vote

tally in order to make it durable. Instead, Basil first decides whether to commit or abort

T based on the shard votes it has received, and then logs its decision to only a single

shard before proceeding to the Writeback phase.

Stage 2: Making the decision durable

5: C→ R: The client replicates its tentative 2PC decision durable.

C makes its decision durable by storing an (authenticated) message st2 B

〈idT , decision, {ShardVotes}, view = 0〉 on one of the shards that voted in Stage 1 of

the Prepare phase; we henceforth refer to this shard, chosen deterministically depending

on idT , as S log. The set {ShardVotes} includes the vote tallies of all shards to prove the

61



decision’s validity. Like many consensus protocols (e.g., [30, 101, 141]), Basil relies on

the notion of view for recovery: the value of view indicates whether this st2 message

was issued by the client that initated T (view= 0) or it is part of a fallback protocol. We

discuss view’s role in detail in Section 3.4.

6: R→ C: Replicas in S log receive the st2 message and return st2r responses.

Each replica validates that C’s 2PC decision is justified by the corresponding vote

tallies; if so, the replica logs the decision and acknowledges its success. Specifically, it

replies to C with a message of the form st2r := 〈idT , decision, viewdecision, viewcurrent〉σR;

viewdecision and viewcurrent capture additional replica state used during recovery. We once

again defer an in-depth discussion of views to Section 3.4.

7: C ← R: The client receives a sufficient number of matching replies to confirm a

decision was logged.

C waits for n − f st2r messages whose decision and viewdecision match, and creates

a single shard certificate v-certS log:= 〈idT , S , decision, {st2r}〉 for the logging shard.

3.3.3 Writeback Phase

C notifies its local application of whether T will commit or abort, and asynchronously

broadcasts to all shards that participated in the Prepare phase a corresponding decision

certificate (c-cert for commit; a-cert for abort).

1: C→ R: The client asynchronously forwards decision certificates to all participat-

ing shards.

C sends to all involved shards a decision certificate (c-cert: 〈idT , Commit, {v-certS }〉

for a Commit decision, a-cert: 〈idT , Abort, {v-certS }〉 otherwise). We distinguish be-

tween the fast, and slow path: On the fast path, c-cert consists of the full set of Commit
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v-cert votes from all involved shards, while an a-cert need only contain one v-cert vote

for Abort. On the slow path, both c-cert and a-cert simply include v-certS log .

2: R← C: Replica validates c-cert or a-cert and updates store accordingly.

Replicas update all local data structures, including applying writes to the datastore

on commit and notifying pending dependencies.

3.3.4 MTSO Execution Example

Figure 3.2 illustrates an example execution in Basil and the respective MVTSO-check

results across several inconsistent replicas. Replicas manage two objects, a and b, whose

initial versions vary across replicas. The example follows the life of four transactions;

for simplicity, we identify a transaction via its timestamp.

1 Transaction T10 (tsT = 10) reads two different committed versions (a6 and a8) and

selects the freshest version (a8).

2 T10 and T9 are conflicting: T10 missed T9’s write (a9), and as a result, one of the

transactions has to abort. This decision can differ across replicas, as they may process

T9 and T10 in different orders. Replicas prepare only the first transaction processed and

vote to abort the other.

3 T7 too writes to a but is not in conflict with T10, since T10’s read version a8 is fresher

than T7’s write a7.

4 T10 prepares successfully at several replicas; T12 reads the prepared write b10 and

acquires a dependency on T10.

5 T10 successfully commits, but its commit confirmation (Writeback) has not yet ar-

rived at all replicas: 6 T12 cannot prepare at the first replica (validation blocks) until

its dependency (T10) is resolved locally.
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Figure 3.2: Basil example execution. rx(C : ay, P : az) denotes that transaction Tx—with
timestamp x—reads the version y of object a written by committed transaction Ty and version
z from tentatively prepared transaction Tz. Px(r(az),w(bx), dep(Tz)) denotes a transaction Tx’s
prepare request with ReadSet az, the WriteSet bx, and a dependency on Tz. → C/A denotes the
prepare request’s validation outcome (commit/abort).
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3.3.5 An Optimization: Reply Batching

To amortize the cost of signature generation and verification, Basil batches messages

(Figure 3.3). Unlike leader-based systems, Basil has no central sequencer through which

to batch requests; instead, it implements batching at the replica after processing mes-

sages. To amortize signature generation for replies, Basil replicas create batches of b

request replies, generate a Merkle tree [128] for each batch, and sign the root hash. They

then send to each client C that issued a request: (i) the root hash root, (ii) a signed ver-

sion σ of the same root, (iii) the appropriate request reply RC, and (iv) all intermediate

nodes (denoted πC in Figure 3.3) necessary to reconstruct, given RC, the root hash root.

Through this batching, the cost of signature generation is reduced by a factor of b, at the

cost of log(b) additional messages.

Batching

Replica

Verification

Replica

Signing

RA: ReplyClient-A

Client-A

HA HB

root = HAB

If(reply + π != root) 
return False

If cache[root] = σ
return true

Else:
return Verify(root, σ)

Hash(RA)

RB: ReplyClient-B

Hash(RB)

Verify(RA, πA, root)

If not chached:
Verify(root, sig) & 

cache

Example of batch signatures for two clients. Sig and root (green) are the the same for 
all replies in a batch. Reply and auxillary path π are unique to each client (red for client-
A) and are used to re-construct and validate root.

Client-B

σ = sig(root)

Signature Cache

root σ
Verify & Insert

root, σ

Hash(HA || HB)

RB, root, σ, πB = [HA]

Send Reply Send Proof

RA, root, σ, πA = [HB]

Verify(RB, πB, root)

Lookup
root, σ

Figure 3.3: Basil batching for two clients. Signature σ and batch root are the same across
batched replies. Reply RC and proof πC are unique to each client C and can validate root.

To amortize signature verification, Basil uses caching. When a replica successfully

verifies the root hash signature in a client message m, it caches a map between the cor-

responding root hash value and the signature. If the replica later receives a message m′

carrying the same root hash and signature as m (indicating that m and m′ refer to the

same batch of replies), it can, upon verifying the correctness of the root hash, immedi-

ately declare the corresponding signature valid.
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3.3.6 Discussion

Stripping layers When 2PC is layered above shards that already order transactions in-

ternally using state machine replication, then within every shard every correct replica

has logged the vote of every other correct replica. Basil’s design avoids this indiscrim-

inate cost: if all shards are fast, then their votes are already durable without requiring

replicas to run any coordination protocol; and if some shards are slow, as we mentioned

above, only the replicas of a single shard need to durably log the decision. As a re-

sult, the overhead of Basil’s logging phase (Stage 2) remains constant in the number of

involved shards.

Signature Aggregation Basil, like recent related work [80, 192], can make use of sig-

nature aggregation schemes [24–26, 29, 69, 90, 129, 163] to reduce total communication

complexity. The client could aggregate the (matching) signed st1r or st2r replies into

a single signature, thus ensuring that all messages sent by the client remain constant-

sized, and hence Basil total communication complexity can be made linear. In practice,

however, most signature aggregations schemes are only efficient for large f [80]. The

current Basil prototype does not implement this optimization.

Not all signature aggregation schemes are compatible with batching. Multi-

signatures [24, 25, 90, 129] and Threshold signatures [24, 29, 163], for instance, cannot

be used together with batching as they require the signed messages to match. Batch

roots, instead, can differ across replicas who may not create common batches. Ag-

gregating signed batch roots requires schemes that support aggregating signatures of

distinct messages [26, 69].

Why n = 5 f + 1 replicas per shard? Using fewer replicas has two main drawbacks.

First, it eliminates the possibility of a commit fast path. With a smaller replication fac-
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tor, CQs of size n−2 f ( f can differ because of asynchrony, another f can differ because

of equivocation) would no longer be guaranteed to overlap in a correct replica, making it

possible for conflicting transactions to commit, in violation of Byz-serializability. Sec-

ond, it precludes Byzantine independence. For progress, clients must always be able to

observe either a CQ or an AQ, but, for Byzantine independence, the size of neither quo-

rum must fall below f +1: with n ≤ 5 f , it becomes impossible to simultaneously satisfy

both requirements. We discuss in Section 3.7 the conceptual modifications required to

instantiate Basil with only 3 f + 1 replicas.

3.4 Transaction Recovery

For performance, Basil optimistically allows transactions to acquire dependencies on

uncommitted operations. Without care, Byzantine clients could leverage this optimism

to cause transactions issued by correct clients to stall indefinitely. To preserve Byzantine

independence, transactions must be able to eventually commit even if they conflict with,

or acquire dependencies on, stalled Byzantine transactions. To this effect, Basil enforces

the following invariant: if a transaction acquires a dependency on some other transaction

T , or is aborted because of a conflict with T , then a correct participant (client or replica)

has enough information to successfully complete T .

Specifically, Basil clients whose transactions are blocked or aborted by a stalled

transaction T try to finish T by triggering a fallback protocol. To this end, Basil modifies

MVTSO to make visible the operations of transactions that have prepared only. As

T ’s st1 messages contain all of T ’s planned writes, any client or replica can use this

information to take it upon itself to finish T . A correct client is guaranteed to be able to

retrieve the st1 for any of its dependencies, since f +1 replicas (i.e., at least one correct)
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must have implicitly vouched for that st1 during T ’s read phase. Likewise, a correct

client’s transaction only aborts if at least f + 1 replicas report a conflict.

Basil’s fallback protocol starts with clients: any client blocked by a stalled transac-

tion T can try to finish it. In the common case, it will succeed by simply re-executing

the previously described Prepare phase; success is guaranteed as long as replicas within

the shard S log that logged shard votes in Stage 2 of T ’s Prepare phase store the same

decision for T .

The divergent case, in which they do not, can occur in one of two ways: (i) a Byzan-

tine client issued T and sent deliberately conflicting st2 messages to S log; or (ii) multiple

correct clients tried to finish T concurrently, and collected Prepare phase votes (set of

st1r messages) that led them to reach (and try to store at S log) different decisions. For-

tunately, in Basil a Byzantine client cannot generate conflicting st2 messages at will:

its ability to do so depends on the odds of receiving, from the replicas of at least one

shard, votes that constitute both a CQ and an AQ (i.e., 3f+1 Commit votes and f+1 Abort

votes)—odds which our evaluation (§ 3.6) suggests are low.

Whatever the cause, if a client trying to finish T observes that replicas in S log store dif-

ferent decisions, it proceeds to elect a fallback leader, chosen deterministically among

the replicas in S log. Through this process, Basil guarantees that clients are always able

to finish dependent transactions after at most f + 1 leader elections (since one of them

must elect a correct leader).

Though Basil’s fallback protocol is reminiscent of the traditional view-change pro-

tocols used to evict faulty leaders, it differs in three significant ways. First, it requires

no leader in the common case; further, if electing a fallback leader becomes neces-

sary, communication costs can be made linear in the number of replicas using signature

aggregation schemes (§ 3.3.6). Second, the fallback election is transaction-local, and
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affects only transactions that access the same operations as the stalled transaction: when

a fallback leader is elected for T , the scope of its leadership is limited to finishing T . In

contrast, a standard view-change prevents the system from processing any operation and

the leader, once elected, lords over all consensus operations during its tenure. Finally,

Basil’s fallback leaders have no say on the ordering of transactions or on the decision

they recover; consequently, they do not compromise Byzantine independence.

As in traditional view-change protocols, each leader operates in a view. For inde-

pendent operability, views are defined on a per-transaction basis. Transactions start in

view = 0; transactions in that view can be brought to a decision by any client. A replica

increases its view number for T each time it votes to elect a new fallback leader.

We now describe the steps of the fallback protocol triggered by a client C wish-

ing to finish a transaction T , distinguishing between the aforementioned common and

divergent cases.

Common case In the common case, the client simply resends a st1 message (renamed

for clarity Recovery Prepare (RP) in this context) to all the replicas in shards accessed by

T . Replicas reply with an RPR message which, depending on the progress of previous

attempts (if any) at completing T corresponds to either (i) a st1r message; (ii) a st2r

message; or (iii) a c-cert or a-cert certificate. Based on these replies, the client can

fast-forward to the corresponding next step in the Prepare or Writeback protocol. In

the common case, stalled dependencies thus cause correct clients to experience only a

single additional round-trip on the fast path, and at most two if logging the decision is

necessary (slow path).

Divergent case If, however, the client only receives non-matching st2r replies, more

complex remedial steps are needed. st2r can differ (i) in their decision value and (ii)
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in their view number viewdecision. The former, as we saw, is the result of either explicit

Byzantine equivocation or of multiple clients attempting to concurrently terminate T .

The latter indicates the existence of prior fallback invocations: a Byzantine fallback

leader, for instance, could have intentionally left the fallback process hanging. In both

scenarios, the client elects a new fallback leader. The steps outlined below ensure that,

once a correct fallback leader is elected, replicas can be reconciled without introducing

live-lock.

(1: C→R): Upon receiving non-matching st2r responses, a client starts the fallback

process.

The client sends InvokeFb B 〈idT , views〉, where views is the set of signed current

views associated with the RPR responses received by the client.

(2: R→ RFL): Replicas receive fallback invocation InvokeFb and start election of a

fallback leader RFL for the current view.

R takes two steps. First, it determines the most up-to-date view held by correct

replicas in S log and adopts it as its current view viewcurrent. Second, R sends message

ElectFb B 〈idT , decision, viewcurrent〉σR to the replica with id vcurrent + (idT mod n) to

inform it that R now considers it to be T ’s fallback leader.

R determines its current view as follows: If a view v appears at least 3 f + 1

times in the current views received in InvokeFb, then R updates its viewcurrent to

max(v + 1, viewcurrent); otherwise, it sets its viewcurrent to the largest view v greater than

its own that appears at least f +1 times in current views. When counting how frequently

a view is present in the received current views, R uses vote subsumption: the presence

of view v counts as a vote also for all v′ ≤ v.

The thresholds Basil adopts to update a replica’s current view are chosen to ensure

that all 4 f + 1 correct replicas in S log quickly catch up (in case they differ) to the same
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view, and thus agree on the identity of the fallback leader. Specifically, by requiring

3 f + 1 matching views to advance to a new view v, Basil ensures that at least 2 f + 1

correct replicas are at most one view behind v at any given time. In turn, this threshold

guarantees that (i) a correct client will receive at least f +1 matching views for v′ ≥ v−1

in response to its RP message and (ii) will include them in its InvokeFb. These f + 1

matching views are sufficient for all 4 f + 1 correct replicas to catch up to view v′, then

(if necessary) jointly move to view v, and send election messages to the fallback leader

of v. We defer additional details and proofs to Section 3.5.

(3: RFL→ R): Fallback leader RFL aggregates election messages and sends decisions

to replicas.

RFL considers itself elected upon receiving 4 f + 1 ElectFb messages with matching

views viewelect. It proposes a new decision decnew = majority({decision}) and broadcasts

message DecFb B 〈(idT , decnew, viewelect)σRFL
, {ElectFb}〉, which includes the ElectFb

messages as proof of its leadership.

Importantly, an elected leader can only propose safe decisions: if a decision has

previously been returned to the application or completed the Writeback phase, it must

have been logged successfully,i.e., signed by at least n − f = 4 f + 1 replicas. Thus, in

any set of 4 f + 1 ElectFbmessages the decision must appear at least 2 f + 1 times, i.e., a

majority. Note that this condition no longer holds when using fewer that 5 f + 1 replicas

per shard (§ 3.7): using a smaller replication factor would require (i) an additional (third)

round of communication, and (ii) including proof of this communication in all replica

votes (an O(n) increase in complexity), to guarantee that conflicting decision values may

not be logged for the same transaction.

(4: R→ C): Replicas sends a st2r message to interested clients.

Replicas receive a DecFbmessage and adopt the message’s decision (and viewdecision)
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as their own if their current view is smaller or equal to viewelect and the proof is valid. If

so, replicas update their current view to viewelect and forward the decision to all interested

clients in a st2r message: 〈idT , decision, viewdecision, viewcurrent〉σR .

(5: C): A client creates a v-cert or restarts fallback.

If the client receives n − f st2r with matching decision and decision views, she

creates a v-certS log and proceeds to the Commit phase. Otherwise, it restarts the fallback

using the newly received viewcurrent messages to propose a new view.

An Example We illustrate the entire divergent case algorithm in Figure 3.4, which for

simplicity considers a transaction T involving a single shard. With multiple shards, only

the common case RP messages (and replies) would involve all shards; the divergent case

would always touch only a single shard, S log.
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Figure 3.4: Fallback protocol overview. A Byzantine client equivocates st2r decisions and
stalls. An interested client invokes the fallback protocol: the elected fallback leader reconciles
st2r decisions, allowing the interested client to commit the stalled transaction.

To begin the process of committing T , a (Byzantine) client broadcasts message st1

and waits for all st1r messages. Since the replies it receives allow it to generate both

a Commit and Abort quorum, the client chooses to equivocate, sending st2 messages

for both Commit and Abort. It then stalls. A second correct client who acquired a

dependency on T attempts to finish it. It sends RP messages ( 1 ) and receives non-

matching RPR messages (three Commit and two Abort decisions, all from view 0) ( 2 ).
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To redress this inconsistency, the correct client invokes a Fallback with view 0 ( 3 ).

Upon receiving this message, replicas transition to view 1 and send their own decision

to view 1’s leader in an ElectFb message ( 4 ). In our example, having received a

majority of Commit decisions, the leader chooses to commit and broadcasts its decision

to all other replicas in a DecFb message ( 5 ). Finally, replicas send the transaction’s

outcome to the interested client ( 6 ), who then proceeds to the Writeback phase ( 7 ).

3.5 Correctness

We first sketch the main theorems and lemmas necessary to show safety and liveness

for Basil; full proofs follow. We proceed in two steps: we first prove safety without the

fallback protocol. We then extend our correctness argument to handle fallback cases.

First, we prove that each replica generates a locally serializable schedule. Specif-

ically, we show that at every correct replica, the set of transactions for which the

MVTSO-Check returns Vote-Commit forms an acyclic serialization graph [4].

Lemma 1 On each correct replica, the set of transactions for which the MVTSO-Check

returns Vote-Commit forms an acyclic serialization graph.

We then show that decisions for transactions are unique.

Lemma 2 There cannot exist both an c-cert and a a-cert for a given transaction.

Next, we show that Byz-serializability is preserved across replicas. In particular, we

show that two pairwise conflicting transactions cannot both commit.

Lemma 3 If Ti has issued a c-cert and T j conflicts with Ti, then T j cannot issue a

c-cert.
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Given these three lemmas, we prove that Basil satisfies Byz-serializability.

Theorem 1 Basil maintains Byz-serializability.

Finally, we show that Basil preserves Byzantine independence under non-adversarial

network assumptions.

Theorem 2 Basil maintains Byzantine independence in the absence of a network ad-

versary.

We now explicitly consider the fallback protocol. We first show that certified deci-

sions remain durable.

Lemma 4 Fallback leaders cannot propose decisions that contradict an existing

c-cert/a-cert.

Additionally, we show that any reconciled decision must have been proposed by a

client.

Lemma 5 Any decision proposed by a fallback leader was proposed by a client.

Given these two Lemmas we conclude:

Theorem 3 Invoking the fallback mechanism preserves Theorem 1 and Theorem 2.

Next we show that, given partial synchrony [54] and the existence of a global stabi-

lization time (GST), Basil’s fallback mechanism guarantees progress for correct clients.

Theorem 4 A correct client can reconcile correct replicas’ views in at most two round-

trips and one timeout.

We use this result to prove that fallback election reliably succeeds.
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Lemma 7 After GST, and in the presence of correct interested clients, a correct fallback

leader is eventually elected.

Given this lemma, we show that Basil allows correct clients to complete their depen-

dencies during synchronous periods.

Theorem 5 A correct client eventually succeeds in acquiring either a c-cert or a-cert

for any transaction of interest.

3.5.1 Byz-Serializability

We show that the set of committed transactions is Byz-serializable. By design, the trans-

actions of correct client’s only read from committed writes (i.e., they are legal); transac-

tions that read prepared data wait for dependencies to commit before commiting them-

selves (Alg. 1, Lines 15-19). We now show that the set of all committed transactions

forms an acyclic serialization graph, and thus is equivalent to some serial execution [4].

Lemma 1 On each correct replica, the set of transactions for which the MVTSO-Check

returns Vote-Commit forms an acyclic serialization graph.

Proof. We use Adya’s formalism here [4]. An execution of Basil produces a direct

serialization graph (DSG) whose vertices are committed transactions, denoted Tt, where

t is the unique timestamp identifier. Edges in the DSG are one of three types:

• Ti
ww
−−→ T j if Ti writes the version of object x that precedes T j in the version order.

• Ti
wr
−−→ T j if Ti writes the version of object x that T j reads.

• Ti
rw
−−→ T j if Ti reads the version of object x that precedes T j’s write.
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We assume, as does Adya, that if an edge exists between Ti and T j, then Ti , T j.

First, we prove that if there exists an edge Ti
rw/wr/ww
−−−−−−−→ T j, then i < j. We consider

each case individually.

ww
−−→ case. Assume that there is a Ti

ww
−−→ T j edge. This means that Ti writes a version of

object x that precedes T j in the version order. MVTSO’s version order, for each object,

is equivalent to the timestamp order of the transactions that write to the object. Note

that the order in which versions are added to the list may not match the timestamp order,

but the versions are added to the appropriate indices in the list such that the timestamps

of all preceding versions are smaller and the timestamps of all subsequent versions are

larger than the new version’s timestamp. This implies that i < j.

wr
−−→ case. Assume that there is a Ti

wr
−−→ T j edge. This means that T j reads a version of

object x written by Ti. MVTSO’s algorithm returns, for a read in T j, the latest version

of an object whose version timestamp is lower than j. This implies that i < j.

rw
−−→ case. This case is the most complex. We prove it by contradiction. Assume that

there is a Ti
rw
−−→ T j edge such that this edge is the first edge where i ≥ j. Ti

rw
−−→ T j means

that Ti reads the version of object x that precedes T j’s write. Let that version be xk. By

the assumption that Ti , T j, i > j. By the definition of the direct serialization graph,

Tk
wr
−−→ Ti and Tk

ww
−−→ T j. The previous cases imply that k < i and k < j.

Consider a replica that ran the MVTSO-Check for both Ti and T j. There are two

subcases: either the check for Ti was executed before the check for T j or vice versa.

1. Ti before T j. Ti must have committed because it exists in the DSG. This implies

that Ti was in the Prepared set when the check was executed for T j (Line 14 of

Algorithm 1). When the check for T j reached Line 10 of Algorithm 1 for T j’s
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write of x j, the condition was satisfied by Ti’s read of xk because k < j and j < i.

Therefore, the check for T j returned Vote-Abort. However, this is a contradiction

because T j committed.

2. T j before Ti. T j must have committed because it exists in the DSG. This implies

that T j was in the Prepared set when the check was executed for Ti. When the

check for Ti reached Line 7 of Algorithm 1 for Ti’s read of xk, the condition was

satisfied by T j’s write of x j because k < j and j < i. Therefore, the check for Ti

returned Vote-Abort. However, this is a contradiction because Ti is committed.

In all cases, the preliminary assumption leads to a contradiction. This implies that i < j.

Next, we use the fact that if there exists an edge Ti
rw/wr/ww
−−−−−−−→ T j, then i < j to

prove that the set of transactions for which MVTSO-Check returns Vote-Commit is

serializable.

Acyclicity The set of transactions is serializable if the DSG has no cycles. Assume for

a contradiction that there exists a cycle consisting of n transactions Tts1 , ..., Ttsn . By the

previous fact, this implies that ts1 < ... < tsn < ts1. However, transaction timestamps are

totally ordered. This is a contradiction. Thus, the DSG has no cycles. �

Lemma 2 There cannot exist both an c-cert and a a-cert for a given transaction.

Proof. There are two ways that the client can form a c-cert/a-cert: through the single

phase fast-path, and through the two-phase slow path. We consider both in turn. Recall

that on the fast path a c-cert contains a list of st1r as evidence for each shard, while

an a-cert contains a list of st1r for a single shard (that voted to abort). On the slow

path instead, both a c-cert and an a-cert contain only a list of st2r only for the logging

shard S log. The intuition behind this difference is that, on the fast path, the two-phase
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commit decision has yet to be validated, whereas on the slow path, it has already been

confirmed and logged to a single shard in an effort to reduce redundant logging.

In the following, we show that for all possible combinations of certificates, no c-cert

and a-cert can co-exist.

Commit Fast Path, Abort Fast Path Assume that a client generates both a c-cert and

an a-cert for T and that both went fast path. A fast c-cert requires n = 5 f + 1 replicas

(commit fast path quorum) to vote commit T on every shard, while a fast a-cert requires

either 1 vote if a c-cert is present to prove the conflict (abort fast path quorum, case 1), or

3 f +1 votes on a single shard otherwise (abort fast path quorum, case 2). We distinguish

abort fast path quorum cases 1 and 2:

1. If a c-cert exists for a conflicting transaction, then, by definition of a c-cert, at

least 3 f + 1 (commit slow path quorum) replicas of the shard in question must

have voted to commit a transaction T ′ that conflicts with T . Since correct repli-

cas (i) do not vote to commit conflicting transactions (Lemma 1), and (ii) never

change their vote, it follows that at least 2 f + 1 correct replicas must vote to abort

T . By assumption, however, all correct replicas voted to commit T . We have a

contradiction.

2. Correct replicas never change their vote. Because any two replica quorums (on

a given shard) of size 5 f + 1 and 3 f + 1, respectively, must intersect in at least

correct replica, it follows that at least one correct replica equivocated and voted to

both commit and abort. We have a contradiction.

Abort Fast Path, Commit Slow Path Assume that a client generates both a c-cert

that went slow path and an a-cert that went fast path for T . A slow c-cert requires

n − f = 4 f + 1 matching st2r replies from the logging shard. In order for a correct
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replica to send a commit st2r message it must have received a vote tally of at least

3 f + 1 commit votes created on every shard. Instead, a fast a-cert requires either 1 vote

if a c-cert is present to prove the conflict (abort fast path quorum, case 1), or 3 f + 1

votes on a single shard otherwise (abort fast path quorum, case 2). We distinguish abort

fast path quorum cases 1 and 2:

1. If a c-cert exist for a conflicting transaction, then by definition of a c-cert, at least

3 f + 1 (commit slow path quorum) replicas of the shard in question must have

voted to commit a transaction T ′ that conflicts with T . Since correct replicas (i)

do not vote to commit conflicting transactions (Lemma 1), and (ii) never change

their vote, it follows that at least 2 f + 1 correct replicas must vote to abort T . By

assumption, however, at least 3 f + 1 replicas voted to commit T . Because any

two replica quorums (on a given shard) consisting of 2 f + 1 correct and 3 f + 1

replicas, respectively, must intersect in at least correct replica, it follows that at

least one correct replica equivocated and voted to both commit and abort. We

have a contradiction.

2. Correct replicas never change their vote. Because any two sets of 3 f + 1 replicas

(on a given shard) must intersect in at least correct replica, it follows that at least

one correct replica equivocated and voted to both commit and abort. We have a

contradiction.contradiction.

Commit Fast-Path, Abort Slow-Path Assume that a client generates a c-cert that went

fast path and a a-cert that went slow path for a transaction T . A fast c-cert requires

n = 5 f + 1 replicas (commit fast path quorum) to vote to commit T on every shard,

while a slow a-cert requires n − f = 4 f + 1 st2r messages from the logging shard with

the decision to abort. In order for a correct replica to send a valid abort st2r message, it

must have received a vote tally of at least f + 1 abort votes created on a single shard.
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Correct replicas never change their vote. Because any two replica quorums (on a

given shard) of size 5 f + 1 and f + 1, respectively, must intersect in at least correct

replica, it follows that at least one correct replica equivocated and voted to both commit

and abort. We have a contradiction.

Commit Slow-Path, Abort Slow-Path Assume that a client generates a c-cert and

an a-cert for a transaction T , both of which went slow path. Recall that each slow path

certificate requires n− f = 4 f +1 matching st2r replies from the logging shard. Because

correct replicas adopt at most one decision per view and any two replica quorums of size

4 f + 1 must overlap in at least one correct replica it follows that there cannot exist a c-

cert and a-cert for the same view. Without loss of generality, assume that the c-cert

was generated in a view smaller than the a-cert. By Lemma 4, however, the fallback

protocol cannot recover a decision that conflicts with an existing c-cert or a-cert. We

have a contradiction.

It follows that there cannot be both a c-cert and a-cert for a transaction T . �

It follows from Lemma 2 that no two correct replicas can ever process a different

outcome (commit/abort) for a transaction T . Thus, given a fixed set of total transactions,

all replicas are eventually consistent.

Next, we show that two conflicting transactions cannot both commit. We define

transaction T j as conflicting with Ti if adding T j to a serialization graph that includes Ti

would introduce a cycle. By Lemma 1, if a replica has committed or prepared Ti (i.e.,

Ti ∈ Commit ∪ Prepared), then its local MVTSO-check will vote to abort T j. We show

that Basil also precludes such conflicts across replicas.

Lemma 3 If Ti has issued a c-cert and T j conflicts with Ti, then T j cannot issue a

c-cert.
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Proof. As Ti has committed, a client has generated a c-cert for Ti. If a c-cert for T ex-

ists, then at every involved shard at least 3 f + 1 replicas voted to commit the transaction

(the slow path requires 3f+1 votes, the fast path 5f+1), and consequently at least 2 f + 1

correct replicas on each involved shard voted to commit.

Assume by way of contradiction that a client C has created a c-cert for T j. There

are two ways of achieving this: either C generates a c-cert through the fast path or it

does so through the slow path. Note, that since Ti and T j conflict, their involved shards

must intersect in one common shard S common.

Fast Path If T j’s c-cert was created through the fast path, then all n− f = 4 f +1 correct

replicas on S common voted to commit T j. By assumption, however, at least 2 f + 1 correct

replicas have already voted to commit Ti and thus vote to abort T j (Lemma 1). We have

a contradiction. C cannot generate a c-cert for T j through the fast path.

Slow Path If T j’s c-certwas created through the slow path, then there must exist at least

2 f + 1 correct replicas on S common that voted to commit T j. By assumption, however, at

least 2 f + 1 correct replicas have already voted to commit Ti. Because any two sets of

2 f + 1 correct replicas must intersect (there are 4 f + 1 total correct replicas) it follows

that at least one correct replica voted to commit T j despite it creating a cycle in the

serialization graph with Ti (violating Lemma 1). We have a contradiction. C cannot

generate a c-cert for T j through the slow path. �

Theorem 1 Basil maintains Byz-serializability.

Proof. Consider the set of transactions for which a c-cert could have been assigned.

Consider a transaction T in this set. By Lemma 2, there cannot exist an a-cert for
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this transaction. By Lemma 3, there cannot exist a conflicting transaction T ′ that gen-

erated a c-cert. Consequently, there cannot exist a committed transaction T ′ in the

history. The history thus generates an acyclic serialization graph. The system is thus

Byz-Serializable. �

3.5.2 Byzantine Independence

Theorem 2 Basil maintains Byzantine independence in the absence of network adver-

sary.

We show that correct client’s transaction results (reads and commit decisions) cannot

be unilaterally decided by any group of (colluding) Byzantine participants.

Proof. First, we note that a set of Byzantine replicas cannot force a correct client to

read (i) an imaginary version or (ii) a stale version. Specifically, a correct client reads

committed writes only if they are associated with a valid c-cert. Moreover, clients read

the freshest among at least f + 1th read versions returned. This ensures that the returned

version is at least as recent as what could have been written by a single correct replica.

Likewise, a client only reads uncommitted (prepared) writes if they were returned by

f + 1 replicas.

Next, we show that transaction decisions cannot be made by Byzantine replicas

alone. Both fast and slow path commit and abort quorums contain at least one correct

replica. Consequently, if a transaction commits (or aborts), at least one correct replica

voted accordingly.

Finally, we observe that although a Byzantine client may choose to sabotage its own

transaction success (e.g., through stale reads or poor timestamp selection), it cannot
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influence the outcome of its transaction after submitting it for validation. In particular,

a Byzantine client cannot unilaterally abort its own transactions once it has prepared.

Because only prepared (or committed) transactions are visible it follows that a Byzantine

client cannot unilatterally cause dependent (correct) transactions to abort. �

We note that these safeguards are not sufficient to guarantee Byzantine independence

when an adversary controls the network. A powerful network adversary, for instance,

could systematically delay delivery or dynamically inject conflicting transactions to in-

fluence the outcomes of target transactions.

3.5.3 Fallback Safety

In the absence of an elected fallback leader (common case of transaction recovery),

clients use st1 or st2 messages and follow the same rules as during normal execution.

Byzantine clients that equivocate during st2 are indistinguishable from concurrently

active clients. As such, all theorems introduced so far in Section 3.5 continue to hold.

A fallback leader is only elected when a client detects inconsistent st2r messages

(the divergent case of transaction recovery) during decision logging. Consequently, we

only need to consider the effects of the fallback protocol on decisions that were gen-

erated through the slow path. Note that slow-path processing (slow path c-cert’s and

a-cert’s) and the fallback leaders operate only on the logging shard; we thus consider

only the logging shard in the rest of our proofs. We show that (i) if a slow path c-cert

or a-cert already exists, the fallback protocol never produces a conflicting decision cer-

tificate, and that (ii) if no decision certificate exists, any decision c-cert/a-cert created

must correspond to a decision made by some client (i.e., the decision is based on a set

of ShardVotes).
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Reminder. For convenience, we re-state the decision reconciliation rule used by the

fallback. The fallback leader collects ElectFb messages from n − f = 4 f + 1 replicas,

and re-proposes the majority decision: decnew = maj({ElectFb.decision}). We note that

matching views are not required here.

We begin by showing:

Lemma 4 Fallback leaders cannot propose decisions that contradict an existing

c-cert/a-cert.

Proof. By Lemma 2, in the absence of the fallback protocol, a c-cert and a-cert cannot

co-exist for any given transaction. In particular, existence of a fast c-cert implies that

that commit is the only valid decision for a st2 message (and vice versa abort for a fast

a-cert). By design, the fallback protocol operates only on Stage 2 decisions: it requires

replicas to have received st2 messages, and only ever changes slow path decisions. For

simplicity, we thus consider in the following only slow path c-certs and a-certs.

For any existing slow path c-cert/a-cert, the associated decision must have been

adopted and logged by at least 3 f + 1 correct replicas (through st2 and st2r messages)

in a matching decision view v. Without loss of generality, let the decision be Commit

(the reasoning for Abort is identical) and the corresponding decision certificate be a c-

cert. Because 4 f + 1 matching replies are necessary to form the c-cert, it follows that

at least 3 f + 1 correct nodes have logged Commit as their decision in view v. Correct

replicas never change their vote within a view.

Let RFB be the first fallback leader to be elected for a view v′ > v. At least 3 f + 1

correct replicas must be in v′, since 4 f + 1 ElectFb messages are required for a leader

to be elected in view v′ (property P1). We note that any existing c-cert with view v ≤ v′

must have been constructed from st2r messages sent by correct replicas before moving
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to view v′, since correct replicas do not accept decisions from smaller views. Since RFB

is the first fallback leader, the 3 f + 1 correct replicas that logged Commit have never

changed their decision ((property P2)).

By P1 it holds that at least 3 f + 1 correct replicas must have cast an ElectFb mes-

sage for v′, and by P2 at least 3 f + 1 correct replicas have logged Commit as their

latest decision. By quorum intersection, it follows that any ElectFb quorum in view

v′ (4 f + 1 ElectFb votes) contains at least 2 f + 1 Commit decisions (any two sets of

3 f + 1 correct replicas overlap in 2 f + 1 correct replicas). It follows from the decision

reconciliation rule that the fallback leader RFB in view v′ must re-propose Commit (the

majority decision).

By induction, this holds for all consecutive views and fallback leaders: if there ever

existed 3 f + 1 correct replicas that logged decision decv = d in view v, then correct

replicas will only ever log decv′ = d for views v′ > v, since a fallback leader will always

observe a majority for decision d.

Consequently, Lemma 4 holds. �

Next, we show:

Lemma 5 Any decision proposed by a fallback leader was proposed by a client.

Proof. Let RFB be the first elected fallback leader that proposes a decision (let its asso-

ciated view be v).

By design, a correct replica only sends a message ElectFb once it has logged a

decision. Thus, RFB is guaranteed to receive a quorum of 4 f + 1 ElectFb messages all

containing decisions. As the fallback waits for 4 f + 1 messages, one decision must be

in the majority. By the decision reconciliation rule, RFB proposes the majority decision.
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By assumption, RFB is the first fallback leader to propose a decision. Thus, all

decisions included in correct replicas’ ElectFb messages were (i) made by a client, and

(ii) are consistent with the provided ShardVotes (correct replicas will verify that st2

messages have sufficient evidence for the decision).

Since any majority decision requires at least 2 f + 1 matching ElectFb messages, it

follows that at least one was created by a correct client and is hence valid. Consequently,

any decision that RFB can propose must have been issued by a client (and is valid). Cor-

rect replicas can thus only receive valid decisions. Because any majority must involve

correct replicas, it follows by induction that for all future views and respective fallback

leaders, any (valid) proposed decision must have been proposed by a client.

Note that if RFB is Byzantine, it may collect two ElectFb message quorums with

different majorities, and equivocate by sending different (valid) DecFb messages to dif-

ferent replicas. In this case, different correct replicas may not adopt the same decision

(thus precluding the generation of a decision-certificate). Nonetheless, both decisions

are valid as they must have originally been proposed by some client. �

We conclude our proof:

Theorem 3 Invoking the fallback mechanism preserves Theorem 1 and Theorem 2.

Proof. Lemma 5 states that a fallback leader can only propose decisions that were pro-

posed by clients. Lemma 4 additionally guarantees that once slow path c-cert/a-cert

exist, the fallback mechanism cannot change them. It follows that Lemma 2 continues to

hold. Consequently, since any c-cert/a-cert generated through the fallback mechanism

are indistinguishable from normal case operation, Theorems 1 and 2 remain valid. �

A Note on Matching Views Slow path c-cert’s and a-cert’s require matching st2rmes-
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sages with matching decision views. This is necessary for safety in case no decision has

been successfully logged so far. Consider an example in which for a view v half of the

replicas have adopted the decisions Commit and Abort respectively. Let P1 (Commit)

and P2 (Abort) be the partitions of replicas with matching votes. A Byzantine fallback

leader may equivocate and form two ElectFb quorums with different majorities, and

send decv+1 = Abort to P1, and decv+1 = Commit to P2. If non-matching views were

allowed, a c-cert could exist by using P1’s st2r’s from view v and P2 st2r’s from view

v + 1, and vice versa for the a-cert, violating Lemma 2. ElectFb quorums, however,

need not match in views for safety. This follows from Lemma 4: once there exists a c-

cert (or analogously an a-cert) for view v no correct replica can ever vote for a different

decision in any future view v′ > v. Any ElectFb quroum consequently will contain a

majority for said decision.

3.5.4 Fallback Liveness

We first show that, during sufficiently long synchronous periods, the election of a correct

fallback leader succeeds. Concretely, we say that after some unknown global synchro-

nization time (GST), an upper bound ∆ holds for all message delays.

In practice, replicas enforce exponential timeouts on each new view: a replica will

not adopt a new view and start a new election until the previous view leader (whether

client(s) or fallback replica) has elapsed its timeout. Replicas may, additionally, allot

an initial grace period timeout for the origniating client (view 0) to avoid unnecessary

fallback invocation and interference from concurrent interested clients.

For convenience, we re-iterate the view change rules (§ 3.4, protocol step 2). A

replica that receives an InvokeFb message updates its current view as follows.
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• R1: If a view v appears at least 3 f + 1 times among the current views included in

InvokeFb, and v is larger than the replicas current view, the replica adopts a new

current view vnew = v + 1.

• R2: Otherwise, the replica sets its current view to the maximum of its current

view and the largest view that appears at least f + 1 times among the current

views included in InvokeFb.

When counting how frequently a view is present in current views, R uses vote subsump-

tion: the presence of view v counts as a vote also for all v′ ≤ v.

We first show that a majority of correct replicas do not diverge in their current view

by more than one, allowing all correct replicas to quickly synchronize.

Lemma 6 At any time there are at least 2 f + 1 correct replicas that are at most one

view apart.

Proof. A client must provide 3 f + 1 matching current views in the InvokeFb message

(rule R1) in order for replicas to adopt the next view and send an ElectFbmessage. This

implies that if any correct replica is currently in view v, there must exist at least 2 f + 1

correct replicas in a view no smaller than v − 1. �

Theorem 4 A correct client can reconcile correct replicas’ views in at most two round-

trips and one timeout.

Proof. Let v be the highest current view held by any correct replica. Since there are

n = 5 f + 1 total replicas, an interested client trying to InvokeFb can wait for at least

n − f = 4 f + 1 replica replies. If the client receives 3 f + 1 matching views for a view

v′ ≥ v − 1 it can use R1 to propose a new view v′′ = v′ + 1 ≥ v that will be accepted by

all correct replicas in just a single round-trip.
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If a client cannot receive such a quorum, e.g., due to temporary view inconsistency, it

must reconcile the views first. This is possible in a single additional step: By Lemma 6,

any set of 4 f + 1 replica responses must contain at least f + 1 correct replicas’ votes for

a view v′ ≥ v − 1. Using R2, all correct replicas lagging behind may skip ahead to v′.

Thus, in a second round, the client will be able to receive ≥ 4 f + 1 replica replies for a

view ≥ v′, enough to apply R1 and move all replicas to a common view ≥ v ≥ v′+ 1. We

point out that while only two round-trips of message delays are required, a client may

still have to wait out the view timeout between v − 1 and v (where v is the highest view

held by any correct replica).

It follows that a correct client requires at most two round-trips and one timeout to

bring all correct replicas to the same view. �

Note: If only a few replicas are in the highest view (i.e., less than f + 1— otherwise we

could potentially catch up in a single round-trip using R2), and 4 f + 1 replicas are in

the same view after using R2, then a client does not even need another roundtrip (and a

timeout) in order to guarantee the successful leader election (e.g., if Byzantine replicas

behave correctly there may be 4 f + 1 replicas that send an ElectFb message).

Next, we show that during sufficiently long periods of synchrony, a correct fallback

leader is eventually elected.

Lemma 7 After GST, and in the presence of correct interested clients, a correct fallback

leader is eventually elected.

Proof. In the presence of a correct interested client, Byzantine clients cannot stop the

successful election of a new fallback leader (e.g., by continuously invoking a view-

change on only a subset of replicas in an effort to keep views divergent). This follows

directly from the fact that after GST, once the timeouts for views grow large enough
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to fall within ∆, a correct client will (i) bring all correct replicas to the same view, and

(ii) there is sufficient time for the fallback replica to propose a decision before replicas

move to the next view (and consequently reject any proposal from a lower view).

Finally, we note that election does not skip views as a correct client will broadcast a

new-view invocation to all replicas.

Since fallback leader election is round-robin, it follows that a correct fallback replica

will be elected after at most f + 1 view changes, and that its tenure will be sufficiently

long to reconcile a decision across all correct replicas. �

Next, we show that Lemma 7 allows correct clients to complete any transaction.

Theorem 5 A correct client eventually succeeds in acquiring either a c-cert or a-cert

for any transaction of interest.

Proof. First, we note that a timely client can trivially complete all of its own transactions

that have no dependencies. However, if a client is slow, or its transaction has dependen-

cies, it may lose autonomy over its own transaction. For a given client c, we define the

set Interestedc to include its own transactions and all of its transaction dependencies, as

well as any other arbitrary transactions whose completion a client is interested in.3

We distinguish two cases for each transaction T ∈ Interestedc whose original client

has failed to make timely progress:

(i) An interested client c manages to receive a c-cert/a-cert by either issuing a RP

message and receiving a Fast-Path Threshold of st1r messages for all involved shards,

or by issuing a new st2 message and receiving n − f st2r messages from the logging

3A client may, for instance, drive completion of unfinished transactions for altruistic reasons (e.g.,
garbage collection).
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shard. In this case, a client is able to complete the transaction independently as any client

may broadcast c-cert’s/a-cert’s to the involved shards. Theorems 1 and 2 continue to

hold as this case follows the normal-case protocol operation.

(ii) An interested client cannot obtain decision certificates and invokes the fallback

protocol. By Lemma 7, during a sufficiently long synchronous period, a correct fallback

leader will be elected after at most f + 1 views. This fallback leader will reconcile a

consistent decision across all correct replicas in the logging shard, thus allowing the

interested client c to receive a n− f matching st2r messages. This allows c to construct

the respective c-cert/a-cert and proceed to the Writeback Phase. �

Practical Optimizations

The first view A replica in view 0 can accept an InvokeFb message without a proof of

replica views, allowing a client to propose view 1 without first collecting a set of signed

current views. Since replicas begin in view 0 and only increment their view without

proof once, this optimization trivially maintains the invariant that a majority of correct

replicas are no more than one view apart (Lemma 6). In synchronous, fault-free settings,

only a single fallback invocation is necessary, allowing for transaction recovery without

additional view signatures.

Bounding divergence In the absence of correct interested clients, Byzantine clients may

invoke fallback elections at a subset of replicas, either in an effort to move replicas to

large views (with high timeouts) or to selectively skip candidate leaders. To avoid this,

replicas may opt to share their ElectFbmessages to all other replicas; ElectFbmessages

addressed to non-leader replicas (for a given view) need not be signed, but may simply

use MACs. Replicas that receive f + 1 ElectFb messages adopt the view (if larger than
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their current) and create an ElectFb message themselves, thus ensuring that all correct

replicas adopt each new view, and a fallback leader is successfully endorsed.

This optimization is not necessary for liveness but can speed up recovery once a

correct client becomes interested. To limit all-to-all communication, one might choose

to only enable the optimization for views v > t, where t can be a system hyperparameter.

If the additional communication, instead, is of no concern, this optimization may also be

used instead of client-driven InvokeFb messages in an effort to reduce signature costs.

Clients can, for instance, simply request a view change: replicas enter the next view

and broadcast a new ElectFb message once they have (i) received a request, (ii) elapsed

their current view timeout, and (iii) received at least 2 f + 1 ElectFb messages for the

current view (enough to guarantee every correct replica will receive at least f +1 ElectFb

messages and join the current view). This ensures that correct replicas neither diverge

too far, nor skip views.

3.5.5 Revisiting Vote Subsumption

Our discussion of the recovery protocol thus far has relied on the use of vote subsumption

for validating and choosing a new current view when invoking a fallback leader election.

Vote subsumption allows a client to form an InvokeFb message using a set of current

views that includes replica signatures cast for non-matching views: when counting how

frequently a view is present in the received current views a replica considers the presence

of view v as a vote also for all views v′ ≤ v.

This simplifies the election process, but limits the applicability of signature aggre-

gation schemes. While some schemes [26, 69] support the aggregation of signatures on

non-matching messages, more efficient multi-signature [24, 25, 90, 129] or threshold
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signature [24, 29, 163] schemes require matching messages.

In the following we briefly show that vote subsumption is not necessary for progress,

and how to modify Basil’s fallback protocol to omit it if desired. We show that client

can, by reasoning carefully about the set of current replica views received, always wait

for matching responses.

Lemma 8 An interested client trying to send InvokeFb can always use matching current

views.

Proof. Since there are n = 5 f + 1 total replicas an interested client trying to submit an

InvokeFb can wait for at least 4 f + 1 current view messages from different replicas. Let

view v be the largest view among the received views.

If v was sent by a correct replica, then it follows from Lemma 6 that there must be at

least f other views v′ ≥ v − 1 among the received views. If there are not, then the client

can conclude that v must have been sent by a Byzantine replica and hence it can remove

v (and the replica that sent it) from consideration and wait for an additional current view

message.

We assume in the remainder that v is the largest observed view that meets the above

criterion. Thus, the client received at least f + 1 current views that are at most one view

apart from one another (v and v′). We distinguish three cases:

1 There are 3 f + 1 matching views: The client can use rule R1 to send an InvokeFb

message using only matching views. �

2 There are f + 1 matching views: The client can use rule R2 to send an InvokeFb

message using only matching views. �
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3 There are fewer than f + 1 matching views. However, as established above, there

are at least f + 1 current views (in particular two, v and v′) that are at most one view

apart from one another. We distinguish two sub-cases:

• v was sent by a correct replica: Then it follows from Lemma 6 that at least 2 f + 1

total correct replicas must be in a view v′′ ≥ v − 1. Thus, if the client does not

observe at least f + 1 matching current view messages for either view v or v′, then

it can keep waiting. By the pigeonhole principle, it must receive f + 1 matching

current views for v or v′.

• v was not sent by a correct replica: Then it follows that v′ must have been sent by

a correct replica, since f + 1 replicas reported either v or v′ as their current view.

It follows from Lemma 6 that there are at least 2 f + 1 correct replicas in view

v′′ ≥ v′ − 1. Consequently the client can keep waiting until it observe either f + 1

matching current views for v′ or for v′′.

In both cases the client is able to wait for f + 1 matching current views, and hence it

can use R2 to send an InvokeFb message using only matching views. �

Since the client can always use matching messages, it follows that both multi-

signature and threshold signature schemes are applicable to InvokeFb messages.

Lemma 8 does not suffice to conclude progress since we only showed that a client

can always succeed in receiving enough matching replies to apply rule R2. However, it

follows directly that a client will also be able to apply rule R1 within at most another

exchange, and thus ensure progress for continued fallback leader election.

We conclude:

Theorem 6 Vote subsumption is not necessary for progress in Basil.

94



Proof. Since clients are guaranteed to gather sufficient catch up messages (Lemma 8) it

is guaranteed that, after catching up, there will be at least 4 f +1 correct replicas within at

most one view of each other. Let vmax be the larger of the two views. By the pigeonhole

principle, a client is guaranteed to be able to wait for least f + 1 matching votes for vmax

or 3 f + 1 matching votes for vmax − 1. Thus, the client can move all replicas to view vmax

(using only matching views), ensuring progress. �

A correct client can ensure progress (successful leader election) during a “stable”

timeout (after GST) in which replicas are not changing views while the client is waiting

for replies. If replicas are changing their views, then waiting for the first received mes-

sage from a replica is potentially insufficient to receive matching replies: A client can

(and needs to) keep waiting until it does receive matching messages, potentially displac-

ing old replica votes with newer ones. Eventually, given partial synchrony, there will be

a long enough timeout to ensure stability and progress. Replicas can simply send their

new view to each interested client everytime they increment it or rely on periodic client

pings to query their current view.

3.6 Evaluation

Our evaluation seeks to answer the following questions:

• How does Basil perform on realistic applications? (§ 3.6.1)

• Where do Basil’s overheads come from? (§ 3.6.2)

• What are the impacts of our optimizations in Basil? (§ 3.6.3)

• How does Basil perform under failures? (§ 3.6.4)
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Baselines We compare against three baselines: (i) TAPIR [195], a recent distributed

database that combines replication and cross-shard coordination for greater performance

but does not support Byzantine faults; (ii) TxHotstuff, a distributed transaction layer

built on top of the standard C++ implementation [191] of HotStuff, a recent consensus

protocol that forms the basis of several commercial systems [10, 16, 31, 179, 181],

most notably Facebook Diem’s Libra Blockchain; and (iii) TxBFTsmart, a distributed

transaction layer built on top of BFT-SMaRt [23, 176], a state-of-the-art PBFT-based

implementation of Byzantine state machine replication (SMR).4

HotStuff and BFT-SMaRt support general-purpose SMR, and are not fully-fledged

transactional systems; we thus supplement their core consensus logic with a coordina-

tion layer for sharding—running the Two-Phase Commit (2PC) protocol—and an ex-

ecution layer that implements a standard optimistic concurrency control serializability

check [104] and maintains the underlying key-value store. This architecture follows the

standard approach to designing distributed databases (e.g., Google Spanner [40], Hy-

perledger Fabric [8] or Callinicos [145, 146]) where concurrency control and 2PC are

layered on top of the consensus mechanism. Spanner and Hyperledger (built on Paxos

and Raft, respectively) are not Byzantine-tolerant, while Callinicos does not support in-

teractive transactions. To the best of our knowledge, ours is the first academic evaluation

of HotStuff as a component of a transactional system.5

We use ed25519 elliptic-curve digital signatures [19, 134] for both Basil and the

transaction layer of TxHotstuff and TxBFTsmart. Additionally, we augmented both

BFT baselines to also profit from Basil’ reply batching scheme.

Experimental Setup We use CloudLab [36] m510 machines (8-core 2.0 GHz CPU, 64

GB RAM, 10 GB NIC, 0.15 ms ping latency) and run experiments for 90 seconds (30 s

4Our system prototypes can be found at https://github.com/fsuri/Basil_SOSP21_artifact.
5We discussed extensively our setup and implementation with the authors of TAPIR and HotStuff.
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warm-up/cool-down). Clients execute in a closed-loop, reissuing aborted transactions

using a standard exponential backoff scheme. We measure the latency of a transaction

as the difference between the time the client first invokes a transaction to the time the

client is notified that the transaction committed. Each system is configured to tolerate

f = 1 faults (n = 2 f + 1 for TAPIR, n = 3 f + 1 for HotStuff and BFT-SMaRt, and

n = 5 f + 1 for Basil).

3.6.1 High-level Performance

We first evaluate Basil against three popular benchmark OLTP applications:

TPC-C [182], Smallbank [50], and the Retwis-based transactional workload used to

evaluate TAPIR [195]. TPC-C simulates the business logic of an e-commerce frame-

work. We configure it to run with 20 warehouses. As we do not support secondary

indices, we create a separate table to (i) locate a customer’s latest order in the order

status transaction and (ii) lookup customers by last name in the order status and

payment transactions [42, 167]. We configure Smallbank, a simple banking application

benchmark, with one million accounts. Access is skewed, with 1,000 accounts being

accessed 90% of the time. Users in the Retwis-based benchmark, which emulates a

simple social network, similarly follow a moderately skewed Zipfian distribution (0.75).

Figures 3.5 and 3.6 report results for the three applications.

TPC-C Basil’s TPC-C throughput is 5.2x higher than TxHotstuff’s and 3.8x higher

than TxBFTsmart’s—but 4.1x lower than TAPIR’s. All four systems are contention-

bottlenecked on the read-write conflict between payment and new-order. Basil has

4.2x higher latency than TAPIR: this increases the conflict window of contending trans-

actions, and thus the probability of aborts. Basil’s higher latency stems from (i) signature
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generation and verification costs at replicas; (ii) its larger quorum sizes for both read and

prepare phases; and (iii) its need to validate read/prepare replies at clients.

Throughput in Basil is higher than in TxHotStuff and TxBFTsmart. Basil’s superior

performance is directly linked to its lower latency (2.4x lower than TxHotstuff, 1.2x

lower than TxBFTsmart). By merging 2PC with agreement, Basil allows transactions to

decide whether to commit or abort in a single round-trip 96% of the time (through its

fast path). TxHotstuff and TxBFTsmart, which layer a 2PC protocol over a black-box

consensus instance, must instead process and order two requests for each decision (one

to Prepare and another to Commit/Abort), each requiring multiple roundtrips. In partic-

ular, Hotstuff and BFT-SMaRT incur nine and five message delays, respectively, before

returning the Prepare result to clients. In a contention-heavy application like TPC-C, this

higher latency translates directly into lower throughput, since it significantly increases

the chances that transactions will conflict. Indeed, for these applications, layering trans-

action processing on top of state machine replication actually turns a classic perfor-

mance booster for state machine replication—running agreement on large batches—into

a liability. Large batches increase latency and encourage clients to operate in lock-step,

increasing contention artificially. In practice, we find that TxHotstuff and TxBFTsmart

perform best with comparatively small batches (four transactions for TxHotStuff, and

16 transactions for TxBFTsmart).

Smallbank and Retwis Basil is only 1.8x and 2.6x slower than TAPIR for the respec-

tive workloads, which are resource bottlenecked in both systems. The lower contention

in Smallbank and Retwis (due to the relatively small transactions) allows Basil to use

a batch size of 16 for signature generation (up from 4 in TPC-C), thus lowering the

cryptographic overhead that Basil pays over TAPIR. With this larger batch size, both

TAPIR and Basil are bottlenecked on message serialization/deserialization and network-
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ing overheads. Because of their higher latency, however, TxHotStuff and TxBFTsmart

continue to be contention bottlenecked: Basil’s commit rates for Smallbank and Retwis

are 93% and 98%, respectively, but for TxHotStuff they drop to 75% and 85%, respec-

tively, and for TxBFTsmart to 85% for both benchmarks. Even on their best configu-

ration (a batch size of 16 for TxHotStuff and 64 for TxBFTsmart), Basil outperforms

them, respectively, by 3.7x and 2.7x on Smallbank, and by 4.8x and 3.9x on Retwis.

3.6.2 BFT Overheads

Besides requiring additional replicas (from 2 f +1 in TAPIR to 5 f +1 in Basil), tolerance

to Byzantine faults requires both additional cryptography to preserve Byz-serializability

and more larger read quorums to preserve Byzantine independence. To evaluate these

overheads, we configure the YCSB-T microbenchmark suite [39] to implement a simple

workload of identical transactions over ten million keys. We distinguish between a

uniform workload (RW-U) and a Zipfian workload (RW-Z) with coefficient 0.9.

We first quantify the cost of cryptography. To do so, we measure the relative through-

put of Basil with and without signatures. When using signatures, we use a batch size

of 16 for RW-U and 4 for RW-Z. Transactions consist of two reads and two writes. Fig-

ure 3.7 describes our results. We find that Basil without cryptography performs 3.7x

better than Basil with cryptography on the uniform workload (RW-U), and up to 4.6x

better on the skewed workload (RW-Z). Without cryptography, Basil can use cores that

would have been dedicated for signing/signature verification for regular operation pro-

cessing. This effect is more pronounced on the skewed workload as reducing latency

(through increased operation parallelism, lack of batching, and absence of signing/veri-

fication latency) reduces contention, and thus further increases throughput.
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In all sharded BFT systems, the number of signatures necessary per transaction

grows linearly with the number of shards: each replica must verify that other shards

also voted to commit/abort a transaction before finalizing the transaction decision lo-

cally. This requires signed votes from each shard. In Figure 3.8, we quantify this cost

by increasing the number of shards from one to three on the CPU-bottlenecked RW-U

workload. We configure transactions to consist of three reads and three writes. Each
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shard has its own cluster of replica machines, and we run the system with a batch size of

16. Basil without cryptography increases by a factor of 1.9x (on average, transactions

with three read operations will touch two distinct shards). In contrast, Basil’s throughput

increases by only 1.3x.

To guarantee Byzantine independence, individual clients must receive responses

from at least f + 1 replicas (TAPIR clients, instead, can read from single replica). Read-

ing from additional replicas (at least 2 f + 1) can improve freshness—it may increase the

chances that a transaction successfully reads the latest prepared write (acquiring a valid

dependency requires f + 1 matching prepared versions)—at the cost of diminished load

balancing. We measure the relative cost of different read quorum sizes in Figure 3.9. We

use a simple read-only workload consisting of 24 read operations per transaction, and

use a batch size of 16. Unsurprisingly, increasing the read quorum (i) increases the load

on each replica—each replica must process additional messages and generate signatures

for replies—, and (ii) increases verification costs for clients—more replica signatures

(and c-cert’s) must be processed per read. Throughput decreases by 20% when reading

from f + 1 replicas (instead of one), and a further 16% when reading from 2 f + 1.
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3.6.3 Basil Optimizations

We measure how Basil’s performance benefits from batching and from its fast path op-

tion. We report results for YCBS-T with and without fast path (NoFP) on a workload

of two reads and two writes (Figure 3.10). For the uniform workload (RW-U), enabling

fast paths leads to a 19% performance increase; the st2r messages that fast paths save

contain a signature that must be verified, but require little additional processing. For

a contended Zipfian workload (RW-Z), however, the additional phase incurred by the

slow path increases contention (as it increases latency): adding the fast path increases

throughput by 49%. Note that Byzantine replicas, by refusing to vote or voting abort,

can effectively disable the fast path option; Basil can try to prevent this by removing

consistently uncooperative replicas.
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Figure 3.10: Throughput with and without the commit fast path

Next, we quantify the effects of batching. We report the throughput for both work-

loads (transactions again consist of two reads and two writes) while changing the batch

size from 1 to 32 (Figure 3.11). As expected, on the resource-bottlenecked uniform

workload (RW-U), throughput increases linearly with increased batch size until peaking
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at 16 (a 4x throughput increase)—at which point additional hashing costs of the batching

Merkle tree neutralize any further reduction in signature costs. On the Zipfian workload

(RW-Z) instead, throughput only increases by up 1.4x, peaking at a small batch size

of 4, and degrading afterwards as higher wait times and batch-induced client lock step

increase contention (thus reducing throughput).
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Figure 3.11: Throughput with increasing reply batch size

3.6.4 Basil Under Failures

Basil can experience Byzantine failures from both replicas and clients. We have already

quantified the effect of Byzantine replicas preventing fast paths (Figure 3.10) and, by

being unresponsive (or fabricating versions), forcing clients to read larger read quorums

(Figure 3.9). We then focus here on quantifying the effects of client failures.

Basil clients are in charge of their own transactions. Byzantine clients can thus only

disrupt honest participants when their own transactions conflict with those of correct

clients. Otherwise, lack of progress impacts only themselves. A Byzantine client’s

best strategy for successfully disrupting execution is (i) to follow the (estimated/ob-
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served) workload access distribution (only contending transactions cause conflicts), (ii)

choose conservative timestamps (only committing transactions cause conflicts) and (iii)

delay committing a prepared transaction (forcing dependencies to block, and conflicts

to abort).

Byzantine clients can stall after sending st1 messages (stall-early), or before sending

vote certificates v-certS (stall-late). To equivocate, they must instead receive votes that

allow them to generate, and send to replicas, conflicting v-cert certificates. We remark

that equivocating, and hence triggering the divergent case recovery path, is not a strategy

that can be pursued deterministically or even just reliably, since its effectiveness depends

on the luck of the draw in the composition of st1r’s quorum. We evaluate two scenarios:

a worst-case, in which we artificially allow clients to always equivocate (equiv-forced),

and a realistic setup where clients only equivocate when the set of messages received

allows them to (equiv-real).

For both scenarios, we report the throughput of correct clients (measured in

tx/s/clientcorrect). We keep a constant number of clients, a fraction of which exhibits

Byzantine behavior in some percentage of their newly admitted (i.e., not retried) trans-

actions; we refer to those transactions as faulty. Faulty transactions that abort because

of contention are not retried, while correct transactions that abort for the same reason

may need to re-execute (and hence prepare) multiple times until they commit. When

measuring throughput, we report the percentage of faulty transactions as a fraction of

all processed (not admitted) transactions. Figures 3.12 and 3.13 present our results.

For the RW-U workload, the additional CPU load of fallback invocations on the

CPU-bottlenecked servers causes correct clients’ throughput to decrease slowly and lin-

early. Clients invoke fallbacks only rarely, as there is no contention. Moreover, stalled

transactions can be finished in a single round-trip (a pair of RP, RPR) messages thanks
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Figure 3.12: Per-client throughput of correct clients under an uncontended workload with a
uniform access pattern, in the presence of client failures.

to the fallback’s common case and fast path. The small throughput drop over stall-late

is an artefact of Byzantine clients directly starting a new transaction before finishing

the old one, increasing the effective input of malicious clients over correct ones. The

cost of forced equivocation is higher as it requires three rounds of message process-

ing (fallback invocation, election, and decision adoption). In reality, equiv-real sees no

throughput drop, as the lack of contention makes equivocation impossible: Byzantine

clients cannot build the necessary conflicting v-cert’s.

The RW-Z workload is instead contention-bottlenecked: higher latency implies more

conflicts, and thus lower throughput. The impact of stall-late stalls remains small, as all

affected clients still recover the transaction on the common case fast path (incurring

only one extra roundtrip). The performance degradation is slightly higher in stall-early,

as stalled-early transactions do not finish the transactions on which they depend be-

fore stalling. Instead, affected correct clients must themselves invoke the fallback for

stalled dependent transactions, which increases latency. In practice, dependency chains

remain small: because of the Zipfian nature of the workload, correct clients quickly
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Figure 3.13: Per-client throughput of correct clients under a highly contented Zipfian workload,
in the presence of client failures.

notice stalled transactions and aggressively finish them. We note that stalled transac-

tions do not themselves increase contention: Basil allows the stalled writes of prepared

but uncommitted transactions to become visible to other clients as dependencies. A

stalled transaction thus causes dependency chains to grow, but does not increase the

conflict window. The throughput drop that results from forcing equivocation failures is,

in contrast, significant: equivocation requires three round-trip to resolve and may lead to

transactions aborting and to cascading aborts in dependency chains. In practice, Byzan-

tine clients in equiv-real are once again rarely successful in obtaining the conflicting

st1r messages necessary to equivocate, even in a contended workload (0.048% of the

time for 40 % faulty transactions) as 99% of transactions commit or abort on the fast

path.

Basil expects some level of cooperation from its participants and can remove, with-

out prejudice, clients that frequently stall or timeout (in addition to explicitly misbehav-

ing clients). To avoid spurious accusations towards correct clients, exclusion policies

can be lenient since Basil’s throughput remains robust even with high failure rates.
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3.7 Extended Technical Discussion and Optional Modifications

In this section we discuss some additional technical details and optional modifications.

While not integral to the core Basil protocol, these modifications can be used to improve

performance, or to adapt the protocol to specific use cases; or might simply be of interest

to the reader.

3.7.1 Garbage Collection

Basil is a multi-versioned system, and as such, it must be able to garbage collect old

data versions.

Versions Replicas in Basil maintain a low watermark gc, which represents a lower

bound on the set of versions actively managed. Versions with timestamps below gc

are considered eligible for garbage collection. The gc watermark lags behind a replica’s

local time and is advanced periodically—either based on a timer, or when "too many"

new writes have been applied. Replicas reject any new transaction whose timestamp

ts ≤ gc. Writes with timestamps ≤ gc are considered obsolete. In contrast, reads with

timestamps ≤ gc are unsafe: if a replica has already garbage collected versions below gc,

it may no longer be able to guarantee Byz-serializability, as relevant versions required

for the MVTSO-check may have been deleted.

By default, garbage collection is performed per key, triggered by the insertion of

a new version.6 When a new version v > gc is written, the replica prunes all but the

latest version below gc for the corresponding key. The most recent version is retained

to ensure that at least one readable version remains, which is necessary to support reads

6Garbage collection may also be performed periodically in a sweeping manner, which can be beneficial
for keys that are updated infrequently.
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with timestamps > gc. Retaining the latest version also ensures that serializability can

still be enforced for readers that may have observed a now-deleted version. Without

this, such read transactions could no longer be definitively checked for conflicts.

Once a version is garbage collected, the replica also deletes its associated transaction

object and metadata (e.g., commit certificates). This is safe because the transaction

object is no longer needed to service reads or writes—replicas ignore any requests whose

timestamp is below gc.

For auditing purposes, replicas may optionally archive garbage-collected versions

and their metadata to external storage. For example, an offline auditing service could

inspect all transactions and their read/write sets to verify client behavior—such as ensur-

ing clients did not read or write unauthorized values, or violate application semantics.

Decision Certificates In addition to transaction objects and their associated decision

metadata, replicas also maintain decision certificates (c-cert/a-cert). These certificates

serve multiple purposes: (i) they assert the validity of a supplied read version (the c-

cert proves the version committed), (ii) they serve to propagate Writeback decisions

that assist interested clients during the fallback protocol, and (iii) they enable an abort

fast path for validation by providing conflict proofs (the c-cert proves the conflicting

transaction committed).

Decision certificates are garbage-collected alongside their corresponding transac-

tions. However, because certificates may be comprised of large signature quorums, it

can be desirable to collect them more aggressively. In principle, certificates can be safely

discarded whenever, since they are not required to preserve serializability: the existence

of a certificate implies that a corresponding decision has been durably logged on at least

2 f + 1 correct replicas—sufficient to preclude committing conflicting transactions.
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When a replica deletes a certificate, it retains only the decision. It can partake in

fallback invocations by voting with a final decision: a quorum of f + 1 matching final

decisions is sufficient to serve as a Writeback certificate. If such a quorum is unavailable,

the vote may instead be used as a st2r message. To enhance the robustness of the

fallback process—particuarly to avoid involving all shards during resolution—a replica

may choose to retain the certificate until it has confidence that at least 2 f + 1 correct

replicas have finalized the decision. For instance, replicas can gossip finalized decisions

or rely on an off-critical-path Writeback acknowledgement round involving the client.

This ensures that every interested client receives at least f + 1 matching final commit

decisions.

Alternatively, resolution can proceed by confirming that 2 f + 1 correct replicas have

cast matching st2rmessages. (A final decision does not necessarily imply the existence

of st2r messages—for example, when a transaction completes via the fast path.) In this

case, the decision can be resolved entirely on the logging shard. Crucially, any quorum

of n − f messages observed by a client will contain at least f + 1 matching decisions—

sufficient for other replicas to validate and adopt the decision, even if they have not yet

received any st2 messages.

3.7.2 Optimizing Transaction Objects

Hierarchical Transaction IDs Transactions in Basil may span multiple shards but, by

default, store a single global ReadSet, WriteSet, and DependencySet. Although each

shard only applies writes and performs validation (via the MVTSO-check) for keys in

its own namespace, it still stores the entire transaction object. This leads to unnecessary

storage overhead, as every shard effectively stores (meta-)data for the entire database.
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TS3

ReadSet3 = {}
WriteSet3 = {k4, v4}
Dep3 = {}

TS2

ReadSet2 = {k3, v3}
WriteSet2 = {}
Dep2 = {idT3}

TS1

ReadSet1 = {k1,v1}
WriteSet1 = {k2, v2}
Dep1 = {}

idT = H(tsT, [id1, id2, id3])

id1 = H(TS1) id2 = H(TS2) id3 = H(TS3)

Prepare Writeback

all involved shards

idT = H(tsT, [id1, id2, id3])

id1 = H(TS1)

local shard

TS1

ReadSet1 = {k1,v1}
WriteSet1 = {k2, v2}
Dep1 = {}

Figure 3.14: Revised transaction object structure using hierarchical identifiers. Read and write
set metadata is partitioned by shard, with each shard retaining only its locally relevant portion
upon commit.

To address this inefficiency, Basil partitions the transaction object into per-shard sub-

objects (Fig. 3.14). Each sub-object TS i is specific to shard S i and is assigned a unique

identifier idi = H(TS i), computed as the hash of the sub-object. The global transaction

identifier idT B H([idi, ..., id j], tsT ) is then computed as the hash of all the collection of

all sub-identifiers and the transaction timestamp tsT .

During the Prepare phase, the client sends the complete transaction object—

including all sub-objects—to each involved shard. This redundancy ensures that any

shard can aid in recovery if a malicious client never sends the transaction to every in-

volved shard. Each replica in shard S i verifies that: (i) T contains a sub-object for each

involved shard, (ii) all TS j match their claimed digest id j, and (iii) the global identifier

idT is correct. It then runss the MVTSO-check exclusively on its local sub-object TS i . If

TS i contains a key outside S i’s partition, this serves as proof of client misbehavior; the

request is rejected, and then the client may be blacklisted.

During the Writeback phase, clients need only send the relevant sub-object to each

shard, e.g., TS i to shard S i. Likewise, shards may discard non-local portions of a previ-

ously stored transaction object. Since a valid commit Writeback message must include
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a shard-level decision for each involved shard, it follows that all shard have durably

replicated their respective sub-objects. As a result, each shard no longer needs to retain

the global transaction object.

Efficient Write Certificates For read operations, Basil relies on commit certificates (c-

cert) to validate the correctness of a returned (committed) write version. A c-cert serves

as a proof of commitment: it contains a quorum of signatures over the transaction’s

digest (idT ) and its decision. To validate a commit read, a replica must return: (i) the

(latest) committed version of the key, (ii) the corresponding transaction’s c-cert, and

(iii) the full transaction object. The inclusion of the full transaction object is necessary

to verify that the returned version originated from one of the transaction’s writes, and

that the transaction indeed committed. However, sharing the entire transaction object

can be costly—especially for large transactions—and is often unnecessary.

To mitigate this overhead, we adopt a hierarchical organization for the transaction,

similar to the optimization discussed for per-shard transaction sub-objects. These two

optimizations are orthogonal; for simplicity we assume a single-shard transaction in this

section, though the same technique can be independently applied to each shard-specific

sub-object.

We further deepen the transaction object’s hierarchy by structually encoding the

WriteSet itself. Rather than compute the transaction identifier as a flat digest of the

entire ReadSet and WriteSet, we compute it as the digest of their respective sub-digests:

idT = H([d(ReadSet), d(WriteSet)], tsT ). Here, the WriteSet sub-digest is computed as

the Merkle root σ [128] of the WriteSet, where the leaves are key-value pairs. This

hierarchical encoding enables efficient validation of individual writes without requiring

access to the entire transaction object. Speficially, a client only needs to receive: (i) the

write version w, (ii) the corresponding c-cert, and (iii) a write certificate, consisting of
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the transaction timestamp tsT , the ReadSet digest d(ReadSet), the WriteSet Merkle root

σ, and the Merkle proof π associated with w. The client can then verify that the write

version w is indeed part of the transaction’s WriteSet by checking that σ = M(π,w),

where M denotes Merkle tree verification. Finally, the client recomputes the transaction

identifier idT = H([d(ReadSet), d(WriteSet)], tsT ) and verifies that it matches the one

signed in the c-cert.

3.7.3 Aiding Write Commitment

By default, Basil prioritizes validation success for readers—for example, through the

use of Read Timestamps (RTS) and by selecting transaction timestamps at the begin-

ning of execution. This is often a reasonable default: reads require a round-trip to

execute, whereas writes can be buffered locally. However, this approach can increase

the likelihood of aborts for long-running read-write transactions, whose writes may be-

come stale by the time they reach validation. In this section, we discuss a few optional

modifications that aim to improve success rates for writers. We note that this represents

an inherent trade-off: improving outcomes for writers often comes at the expense of

readers, and vice versa.

Late Timestamp Selection In Basil, transaction timestamps are selected at transaction

start, and thus may be “old” by the time the transaction completes. While this poses

no issue for readers—who operate on a consistent snapshot in time—it can negatively

impact writers. For example, a write issued by a long-running transaction might conflict

with a more recent read from a shorter, already-committed transaction, simply because

its timestamp is outdated.

One way to favor writers it to select fresher timestamps. This can be achieved by
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either (i) assigning the transaction timestamp only at commit time (e.g., as the maximum

of all read versions and the local time), or (ii) progressively updating the timestamp

during execution, based on observed versions or elapsed time. These strategies make

writers appear more current, aligning validation more closely with their actual commit

time. However, this comes at a cost: readers may now see a larger conflict window—that

is, a greater delta between the observed version and the transaction’s final timestamp—

leading to higher abort rates for readers.

Retries An alternative, more dynamic approach is to allow transactions that fail vali-

dation to retry the Prepare phase with a new timestamp [195]. When a replica votes

to abort a write due to a read-write conflict (Alg. 1, lines 9-10), it may return a spe-

cial (Vote-Retry) message, along with a suggested retry timestamp (greater than the

conflicting read version).

Functionally, a retry vote is equivalent to an abort vote (Vote-Abort) and counts the

same in vote tallies. However, a client that fails to collect enough commit votes to form

a CommitQuorum (CQ), but receives at least |Vote-Commit| + |Vote-Retry| ≥ 3 f + 1

votes in total, may opt to retry its transaction commit with a higher timestamp. The

retry timestamp is typically the maximum among the suggestions in the Vote-Retry

messages, capped by a configurable bound to prevent Byzantine manipulation. This

mechanism ensures that at least 3 f + 1 replicas view the transaction as either valid in

its current form or acceptable after timestamp adjustment, providing a path to commit

without full re-execution.

That said, retrying with a new timestamp is not a panacea. In many cases, an abort

decision will persist across retries: selecting a higher timestamp with the same ReadSet

may introduce new conflicts with concurrent transactions. In such cases, aborting and

re-executing is the only viable path to success. For this reason, clients are encouraged

114



to enforce a configurable retry policy, which may include both a maximum number of

retry attempts and an upper bound on the allowed conflict window—defined as the delta

between the smallest read version and the selected transaction timestamps.

Importantly, in Basil, transaction identifiers idT are uniquely defined by the transac-

tion timestamp. As a result, retrying a transaction results in a physically distinct trans-

action. To avoid unintentionally committing the logical transaction twice—at different

timestamps, which could lead to anomalies—a correct client should wait until the orig-

inal transaction has durably logged an abort decision before issuing a retry. In practice,

the retry’s Prepare phase can be piggybacked on the Writeback message that records the

abort of the original attempt.

Byzantine clients, of course, are not bound by this, and may submit multiple log-

ically identical transactions with different timestamps—whether as retries or as sepa-

rate submissions. While this behavior is tolerated by the protocol—since each transac-

tion is uniquely identified by its timestamp and validated independently—it may violate

application-level semantics. As such, an external auditing layer may interpret this be-

havior as misbehavior, depending on the application’s correctness criteria.

Read Leases Read Timestamps (RTS) allow readers to tentatively register commit in-

tent during execution, increasing their chances of committing successfully: concurrent

writers that attempt to prepare conflicting writes at lower timestamps are aborted in-

stead. RTS are not necessary for correctness—they are a performance optimization

that improves commit success for headers in highly concurrent workloads. RTS are

also, by design, transient. They affect only writes with timestamps less than the RTS.

Transactions that retry with larger timestamps—either during Prepare or due to full-

rexecution—are unaffected.
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However, RTS can be abused by Byzantine clients that issue reads and acquire RTS

without any intention of completing (and committing) a transaction. Because read-write

transactions may run for an extended period, such unresolved RTS can create conflicts

for a non-negligible number of writers. Unfortunately, this behavior is difficult to detect

or punish directly, as it is from a correct but slow client.

To mitigate this risk, RTS may be implemented as leases: each RTS is associated

with an expiration time, after which it is ignored by writers. Expiration policies can vary

across replicas and be adapted to individual clients. Clients that repeatedly allow their

RTS to expire without completing their transactions are, from the system’s perspective,

functionally equivalent to malicious actors and can be deprioritized accordingly.

Read Only Transactions We briefly discuss an optional optimization for read-only

transactions—transactions that perform no writes. By default, Basil assigns each trans-

action a fixed timestamp ts for which serves as its logical serialization point: the trans-

action is treated as if it occured atomically at time ts.

However, in many applications, it suffices for read-only transactions to observe

some consistent snapshot, rather than a specific timestamp. Serializing reads at the pre-

assigned ts may unnecessarily enlarge the transaction’s conflict window. For instance, if

the read-only transaction’s assigned timestamp ts is greater than the largest version read

v, then any concurrent writer with a timestamp between v and ts introduces a conflict,

forcing either the reading or writing transaction to abort. To reduce such conflicts and

improve commit success—both for the read-only transaction and concurrent writers—a

client may dynamically adjust its timestamp downward to min(ts, v) before entering val-

idation. This constrains the conflict window to only include transactions that may have

influenced the actual data read.
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This optimization is not universally appropriate. While Basil does not enforce strict

serializability,7 some applications may still rely on local causality—for instance, requir-

ing that reads reflect the effects of a client’s own prior writes. Dynamically lowering a

transaction’s timestamp may break this expectation by introducing non-monotonic be-

havior: a client may inadvertently "time travel" and observe a system state that predates

one it already influenced.

3.7.4 Timestamp Selection Alternatives

Basil optimistically allows clients to select their own transaction timestamps. To limit

Byzantine abuse—particularly from clients that select artificially large timestamps to

provoke read-write conflicts—Basil rejects reads and transactions with timestamps

greater than RTime + δ, where RTime is the replica’s local clock and δ accounts for clock-

skew and network latency. The value of δ can be client-specific, adjusted based on

observed latency and behavior (e.g., made smaller for clients that frequently overshoot).

We briefly discuss two alternative mechanisms to mitigate the impact of high client-

issued timestamps.

Scheduling at Replica local time A simple mitigation is for replicas to defer process-

ing requests until their timestamps are no longer in the future—i.e., until the timestamp

matches or precedes the replica’s local clock. This prevents premature validation of

transactions with overly high timestamps, limiting their ability to interfere with concur-

rent operations while increasing their own conflict window. However, such deferral also

introduces additional for correct clients that conservatively overestimate clock skew or

7Basil provides (Byz-) strict serializability if clocks are synchronized and timestamps reflect real time;
otherwise, it guarantees Byz-serializability. As with Byz-serializability, external consistency only holds
for correct clients—Byzantine clients may arbitrarily backdate timestamps to subvert real-time ordering.
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network delay, potentially increasing their risk of abort.

Sourcing Bounded Timestamps Rather than selecting timestamps freely, clients may

obtain a bounded timestamp by querying at least 2 f + 1 replicas (within one shard) and

choosing the f + 1st largest response. This value is both upper and lower bounded by

correct replicas, making it robust to Byzantine manipulation The main drawback is the

additional round-trip latency and the need to attach evidence proving the timestamp’s

legitimacy. To mitigate the latency overhead, clients may combine this mechanism with

Basil’s default optimistic timestamping. For example, a client can provisionally pick a

timestamp and concurrently request a bounded one during execution. Prior to commit, it

updates the transaction timestamp to the minimum of the two; if the adjusted timestamp

falls below any read version in the ReadSet, the transaction must abort.

3.7.5 Streamlining Decision Logging

To confirm that a decision has been durably logged, a client must collect n− f = 4 f + 1

matching decision confirmations (st2r). In the common case—where the network is

synchronous and there are no competing interested clients—a correct client issuing a

st2 request can expect to receive such a quorum. If the first n − f replies do not match,

the client can safely assume that some are Byzantine and continue waiting; all n − f

correct replicas will eventually respond with consistent decisions.

This guarantee breaks down if other clients concurrently attempt to log conflicting

decisions. In such cases, the fallback protocol may be needed to reconcile divergent

decisions. To avoid unnecessary fallbacks, replicas typically allow a short grace period

during which only the originating client is expected to submit a decision. This optimiza-

tion is best-effort and may fail under high tail latencies or asynchronous networks.
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If a client fails to gather 4 f + 1 matching st2r decisions in a timely manner, it

must invoke the fallback protocol. However, it may still wait in parallel for additional

matching replies from the same view. This is safe as the fallback process must preserve

any decision that could have returned.

To streamline progress when replicas nearly match—e.g., when only one or a

few replies deviate—we introduce an optional third logging phase (Stage 3). A

client that receives 3 f + 1 matching st2r messages may broadcast a Stage 3 message

st3 B 〈idT , view, decision, {st2r}〉 containing evidence of the 3 f + 1 matching st2r re-

sponses. This allows a client to make progress even if the first n − f requests include

up to f Byzantine participants that lie about their decision. Replicas that receive a valid

st3 message log the decision and respond with a st3r B 〈idT , view, decision〉 message.

The client considers the decision durably logged once it has received 3 f + 1 matching

st3r responses.

Stage 3 is purely auxillary, and does not interfere with Stage 2: clients may proceed

to Writeback upon receiving either 4 f + 1 st2r’s or 3 f + 1 matching st3r’s. The latter

path may be faster when the last few replicas suffer from high tail latency.

Supporting Stage 3 requires a small change to the fallback reconciliation protocol.

Replicas now include their st3 decision in ElectFbmessages, which carry both the st2r

and st3r decision. In case of a conflict within the same view, st3r decisions take prece-

dence. Specifically, f +1 matching st3r’s suffice to trigger recovery. This is safe because

the existence of f + 1 st3r decisions implies that at least one correct replica observed

3 f + 1 matching st2r messages. By quorum intersection, no two valid but conflicting

st3 messages can exist within the same view. Likewise, no conflicting st3 decision and

a successfully logged st2 decision can exist in the same view. Therefore, any valid st3

provides conclusive evidence that a decision was logged. When conflicting recoverable
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decisions exist across views, the one from the highest view takes precedence.

Trading off Commit and Abort Latency Basil can further harden commit latency by

asymetrically trading it off against abort latency (or vice versa): commit decisions can

finalize with just 3 f + 1 matching st2r replies, as long as abort decisions are required to

complete in Stage 3 (i.e., they cannot finalize in Stage 2). This modification strenghtens

the latency bound for commits, while preserving safety: if a st3 abort decision exists,

it is impossible for 3 f + 1 conflicting st2r commit decisions to exist in the same view

(and vice versa).

To support this asymmetry, the fallback reconciliation rules must be adjusted: f + 1

st2r commit votes suffice to recover (and repropose) a commit decision in Stage 2, while

f + 1 st3r abort votes suffice to replay Stage3. Note that if a transaction committed

(using 3 f + 1 matching st2r replies) then every ElectFb quorum of size 4 f + 1 will

recover the commit decision. The analogous holds true for abort decisions in Stage

3. Within the same view, a valid st3 abort decision takes precedence over a valid st2

commit decision. If there is no valid commit decision ( f + 1 st2r commit votes), but

there are f + 1 st2r abort votes, we replay Stage 2 with abort as it is the only safe

decision. As usual, decisions from higher views override those from lower views.

This optimization is well-suited for applications where aborts are expected to be

rare. In such cases, the common (commit) path completes in two round-trips, while the

less frequent aborts pay the cost of Stage 3. Notably, aborts can still complete early via

the Stage 1 abort fast path with just 3 f + 1 matching st1r abort votes.
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3.7.6 Reducing Deployment Cost

Separating Validation and Storage By default, Basil uses a total of 5 f + 1 replicas.

Although all replicas must participate in concurrency control (CC) to mainain Byz-

serializability and Byzantine independence, not all replicas need store the full dataset.

For servicing reads, it suffices for any given key to be stored at 2 f + 1 replicas. The

remaining replicas need only store metadata—such as keys and version information—

for prepared and committed transactions; values themselves are not required to perform

the MVTSO validation check. This separation enables more flexible deployments.

For example, Basil can operate with 2 f + 1 storage replicas and 3 f additional “wit-

ness” replicas that participate in CC but do not store full data. Alternatively, for scala-

bility, the storage and CC roles can be assigned to physically distinc nodes—e.g., 5 f + 1

lightweight CC witnesses combined with 2 f + 1 dedicated storage nodes. Finally, stor-

ange responsibilities may be distributed across replicas by partitioning keys, allowing

different subsets of 2 f + 1 replicas to store disjoint key ranges.

Basil with 3 f + 1 Replicas

We briefly discuss how Basil can, in theory, be instantiated with only 3 f + 1 total

replicas—referred to as Basil3. While this configuration reduces the total number of

replicas, it is not recommended in practice: it sacrifices Byzantine independence, weak-

ening the systems’ robustness against Byzantine influence, and incurs an extra commit

round. Nevertheless, Basil3 may be of pedagogical interest and applicable in resource-

constrained settings where the deployment cost of 5 f + 1 replicas is prohibitive.

No Byzantine Independence To ensure both safety and liveness with 3 f + 1 replicas,

the CommitQuorum (CQ) size must be fixed at 2 f + 1: smaller quorums lack quorum
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intersection for conflicting transactions, while larger ones exceed the number of replies

a correct client can expect (i.e., n − f = 2 f + 1, from correct replicas).

As a result, if a client fails to collect 2 f + 1 commit votes, it must pessimistically

abort the transaction—even if only a single Byzantine replica voted to abort—breaking

Byzantine independence. While clients may attempt to wait for additionally replies, this

cannot be done reliably under partial synchrony, where remaining correct replicas may

be arbitrarily delayed.

Worse, Byzantine clients can sabotage their own transactions by colluding with

faulty replicas to force aborts, making their prepared writes unreliable. To remain live,

correct clients must then avoid depending on such writes—limiting concurrency and

degrading performance.

No Commit Fast Path Basil3 cannot safely support a single-round commit fast path:

even if all 3 f + 1 replicas vote to commit, the decision is not durably logged. For exam-

ple, a recovering fallback leader might observe only f + 1 commit votes—insufficient

to conclude that a CommitQuorum (CQ) ever existed. As a result, single-round commit

fast paths are unsafe in Basil3 and must be disabled. Abort fast paths, however, remain

viable: receiving 2 f +1 abort votes rules out the existance of any CQ, ensuring the abort

decision is durable.

Additional Logging Round Basil3, further, cannot reliably ensure durability of com-

mit or abort decisions in a single logging round (i.e., Stage 2 alone does not suffice).

Consider a case where a client receives n − f = 2 f + 1 matching st2r commit replies—

seemingly enough to return commit and proceed to Writeback—while the remaining f

replicas locally log an abort. During recovery, the fallback leader must choose a deci-

sion based on any n − f ElectFb votes, of which up to f may be Byzantine. If those
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f replicas flip their vote from commit to abort, the leader might observe only a single

commit and 2 f aborts—insufficient to safely conclude that the transaction indeed com-

mitted, breaking safety. Critically, this situation is indistinguishable from one in which

the client observed 2 f + 1 st2r abort votes and returned accordingly.

A third round—Stage 3—that reaffirms the st2r decisions is required to durably log

a decision. While the protocol structure mirrors the optional Stage 3 variant describe in

Section 3.7.5, Basil3 treats Stage 3 as mandatory: a decision is considered durable only

after successfully completing this round.

In Basil3, a decision is considered durably logged once f + 1 correct replicas have

accepted st3 B 〈idT , view, decision, {st2r}〉 message. This message must include ev-

idence of 2 f + 1 matching st2r responsens, guaranteeing that no conflicting (valid)

st3 messages can exist within the same view. Upon receiving a valid st3, replicas

log the decision and persist the accompanying {st2r} evidence to support recovery. A

client may proceed to the Writeback phase after receiving n − f = 2 f + 1 matching

st3r B 〈idT , view, decision〉 acknowledgments.

The fallback reconciliation rule is adjusted accordingly. Each replica casts its

ElectFb vote based on the latest stage it has reached (e.g., Stage 2 or Stage 3) and

includes the corresponding decision evidence—either the CQ or AQ that justifies a st2

decision, or the set of st2r messages that validates a st3. Reconciliation gives prece-

dence to Stage 3 decisions, and otherwise favors commit over abort. Since no two valid

st3 messages can exist in the same view, a single valid st3 decision is sufficient to re-

cover the outcome and re-initiate Stage 3 with the associated decision. If the ElectFb

quorum contains multiple st3 messages from different views, the one from the high-

est view is selected. If no st3 decision is available, but a valid st2 commit decision

is present, Basil3 attempts to replay Stage 2 with that commit evidence. Otherwise, it
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replays Stage 2 using a CommitQuorum (CQ) or AbortQuorum (AQ) of st1 messages.

Notably, if Basil3 aborted during the Stage 1 abort fast path, no CQ can ever be

formed—correct replicas never change their st1 vote. Every ElectFb quorum of size

n − f will contain at least one st1r abort vote (a valid AQ), ensuring that the system

proceeds to Stage 2 with an abort decision

An Optimization To reduce latency, Basil3 may reintroduce a fast path for Stage 2. The

simplest approach is to treat a decision as durable once the client observes n = 3 f + 1

matching st2r messages. In this case, every ElectFb quorum is guaranteed to contain

at least f + 1 st2 decisions (a majority)—or at least one corresponding st3 decision—

which suffices to safely replay Stage 2. If recovery reveals a valid Stage 2 decision from

a higher view, it takes precedence of any Stage 3 decision.

An alternative, more easily satisfied fast path variant permits only on type of

decision—either commit or abort—to conclude in Stage 2 with 2 f + 1 matching st2r

replies, but not both. This variant mirrors the earlier asymmetric optimization used to

harden commit latency (§ 3.7.5). For example, commit decisions may be finalized in

Stage 2, while abort decisions are required to complete Stage 3 (or vice versa). This

assymetric rule preserves safety: if a st3 decision exists, it is impossible for 2 f + 1

conflicting st2r decisions to exist in the same view (and vice versa). Once again, the

fallback reconciliation rules must be updated accordingly: a single valid st3 abort de-

cision takes precedene over a single valid st2 commit decision in the same view—and,

as usual, decisions from higher views override those from lower ones. In this configura-

tion, the common (commit) path completes in two round-trips, while aborts pay the cost

of Stage 3. Notably, aborts can still complete early via the Stage 1 abort fast path with

just 2 f + 1 matching st1r abort votes.
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3.8 Related Work

Basil builds on a wide range of related work which we summarize briefly.

State machine replication (SMR)[160] maintains a total order of requests across repli-

cas, both in the crash failure model [32, 93, 106–109, 112, 116, 121, 141, 142, 184]

and in the Byzantine setting [12, 23, 27, 30, 34, 35, 53, 79, 80, 100, 101, 110, 120, 124,

126, 154, 190, 192], where it has served as a main building block of Blockchain systems

[7, 8, 16, 27, 71, 98]. To maintain a total order abstraction, existing systems process all

operations sequentially (for both agreement and execution), thus limiting scalability for

commutative workloads. They are, in addition, primarily leader-based which introduces

additional scalability bottlenecks [135, 166, 195] as well as fairness concerns. Rotat-

ing leaders [27, 35, 192] reduce fairness concerns, and multiple-leader based systems

[12, 114, 135, 166] increase throughput. Recent work [85, 96, 97, 105, 197] discusses

how to improve fairness in BFT leader-based systems with supplementary ordering lay-

ers and censorship resilience. Basil sidesteps these challenges by adopting a leaderless

approach and tackles the broader impact of Byzantine actors—not just on ordering—

through the stronger notion of Byzantine independence.

Fine-grained ordering Existing replicated systems in the crash-failure model lever-

age operation semantics to allow commutative operations to execute concurrently [102,

108, 115, 135, 137, 138, 148, 173, 188, 195]. This work is much rarer in the BFT

context, with Byblos [17] and Zzyzyx [84] being the only BFT protocols that seek to

leverage commutativity. However, unlike Basil, Byblos is limited to a static transaction

model and introduces blocking between transactions that are potentially concurrent with

other conflicting transactions; while Zzyzyx resorts to an SMR substrate protocol under

contention. Other existing quorum-based systems naturally allow for non-conflicting
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operations to execute concurrently, but do not provide transactions [1, 41, 122, 125].

Sharding Some Blockchain systems rely on sharding to parallelize independent trans-

actions, but continue to rely on a total-order primitive within shards [7, 98, 194]. As

others in the crash-failure model have highlighted [138, 195, 196], this approach in-

curs redundant coordination and fails to fully leverage the available parallelism within a

workload.

DAGs Other permissionless Blockchains use directed acyclic graphs rather than

chains [152, 155, 157], but require dependencies and conflicts to be known prior to

execution.

Byzantine Databases Basil argues that BFT systems and Blockchains are in fact sim-

ply databases and draws on prior work in BFT databases. HRDB [185] offers interactive

transactions for a replicated database, but relies on a trusted coordination layer. Byzan-

tium [66] designs a middleware system that utilizes PBFT [30] as atomic broadcast (AB)

layer and provides Snapshot Isolation using a primary backup validation scheme. Au-

gustus [146] leverages sharding for scalability in the mini-transaction model [6] and re-

lies on AB to implement an optimistic locking based execution model. Callinicos [145]

extends Augustus to support armored-transactions in a multi-round AB protocol that

re-orders conflicts for robustness against contention. BFT-DUR [150] builds interactive

transactions atop AB, but does not allow for sharding. Basil instead supports general

transactions and sharding without a leader or the redundant coordination introduced by

atomic broadcast.

Byzantine Clients Basil, being client-driven, must defend against Byzantine clients. It

draws from prior work targeted at reducing the severity and frequency of client misbe-

havior [66, 122, 123, 145, 146, 150] and extends Liskov and Rodrigues’ [122] definition
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of Byz-Linearizability to formalize the first safety and liveness properties for transac-

tional BFT systems.

3.9 Conclusion

This chapter introduced Basil, the first leaderless BFT transactional key-value store

supporting ACID transactions. Basil provides the abstraction of a totally ordered

ledger while enabling highly concurrent transaction processing and guaranteeing Byz-

serializability. Basil clients make progress independently, with Byzantine independence

limiting the influence of Byzantine participants. During fault- and contention-free exe-

cutions, Basil commits transactions in a single round-trip.
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CHAPTER 4

PESTO: COOKING UP HIGH PERFORMANCE BFT QUERIES

The previous chapter introduced Basil, a novel client-driven approach to building

Byzantine Fault Tolerant (BFT) datastores. Basil is a scalable, distributed BFT key-

value store that supports parallel transaction execution without requiring total ordering.

This design achieves high throughput and low latency, while mitigating the impact of

Byzantine actors. However, Basil is limited to a key-value store interface and lacks

support for higher-level computation primitives—such as queries—that are essential for

many applications. To overcome this limitation, this chapter introduces Pesto, a scalable

BFT Database that offers full SQL capabilities while maintaining high performance.

The context Decentralized applications that promise safe data sharing between mutu-

ally distrustful parties are being explored in sectors like finance [13, 15, 136], health-

care [5, 9], land records [103], secure key recovery [38], and general-purpose confiden-

tial computing [130, 131]. At their core lie Byzantine Fault Tolerant (BFT) consensus

protocols [30, 73, 80, 101, 192], which provide a totally ordered, tamper-proof log dis-

tributed across mutually distrustful participants. This simple interface ensures that all

parties observe the same set of operations, in the same order. In theory, the log can be

materialized into a datastore consistent across all parties; in practice, however, accom-

plishing this is hard: applications must process the log, coordinate execution to ensure

determinism, and handle potentially complex computations over the logged data.

The most common design for building a BFT datastore layers database functionality

over BFT consensus [8, 55, 127, 151]. While conceptually simple, this approach is

inefficient. Totally ordering all operations forgoes parallelism inherent to the workload.

In theory, this overhead could be mitigated through sharding. Unfortunately, layering

two-phase commit over consensus across many shards imposes significant coordination
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and cryptographic overhead [171, 195, 196].

Solutions that integrate consensus and database functionality have shown higher per-

formance, but only for a basic key-value store (KVS) interface [150, 171]. Basil [171],

the transactional and sharded BFT KVS presented in the previous chapter, eliminates

the need for total ordering by efficiently integrating replication, optimistic concurrency

control, and two-phase commit into a single, low-latency layer. Basil supports interac-

tive transactions in a BFT setting, with performance competitive to crash fault tolerant

(CFT) alternatives; however it only offers a limited KVS API and cannot easily (nor

efficiently, § 4.7.2) express queries like joins, scans, or aggregations that are common to

most real-world workloads.

In contrast, most centralized applications today look for the generality of databases.

They expect support for (i) interactive transactions (transactions in which requests are

interleaved with application code, which are preferred by developers over stored proce-

dures [149]), (ii) a rich query language that supports query functionality (such as SQL),

and (iii) horizontal scalability (the ability to safely partition data across shards).

Today, decentralizing these applications implies tolerating either limited SQL com-

patibility with low performance, or high performance but with a restricted KVS API.

Truly general-purpose BFT databases should instead aim to meet applications where

they are.

Towards expressive high performance BFT This chapter introduces Pesto, a gen-

eral purpose BFT-database that achieves high performance while providing a power-

ful, expressive SQL query interface. Building on Basil’s performant client-driven and

ordering-free design, Pesto expands it to support full SQL functionality,1 making it suit-

able as a drop-in replacement for many existing SQL databases.

1If life gives you Basil... make Pesto!
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To achieve this, Pesto must overcome two challenges.

(i) Maintaining serializability for arbitrary queries. In key-value stores, ensuring the

correctness of a query’s results is straightforward as clients read each key individually.

Commit certificates can assert the validity of read data tuples, and timestamps their

recency; any further computation on read tuples is performed by the client itself, and

thus inherently trustworthy. Pesto, instead, allows clients to submit complex queries

that are executed server-side: asserting correctness thus requires trust in the computation

performed by replicas.

A natural solution is consistent replication, which guarantees correctness by man-

dating that all replicas execute the same query on the same state, thus ensuring that the

client receives enough matching responses to conclude that a correct replica vouched

for the result. Unfortunately, this approach nullifies most of Basil’s performance gains,

as it requires all operations (not just queries) to be totally ordered at every replica.

(ii) Extending concurrency control to generic queries. Basil relies on an optimistic

concurrency control protocol to maintain good performance in the common case while

preventing malicious clients from stalling correct clients’ transactions. Optimistic pro-

tocols, however, generally perform poorly for queries as they must, at least logically,

lock the ranges of keys that may satisfy the query predicate; this results in high abort

rates and low throughput.

Our secret sauce Pesto addresses both challenges with one key insight: when respond-

ing to a query, consistency need only hold for the specific predicate of that query, not the

entire database. Pesto uses this observation to design a client-driven, snapshot protocol

that ensures that, for a given query, replicas reply consistently. In many cases, results

are already consistent, and no additional coordination is needed. When they are not,
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however, active resolution is necessary: Pesto clients dynamically establish a common

snapshot of relevant state across replicas, thus ensuring reliably consistent results.

To improve concurrency, Pesto integrates query predicates and concurrency control

(CC). Inspired by precision locks [92], it proposes a novel optimistic predicate-based CC

check that only aborts concurrent transactions that violate query semantics. This allows

Pesto to support high degrees of concurrency and eases the consistency requirement to

only query results, and not the read state itself.

The benefits The results of our Pesto prototype are promising. On popular transactional

workloads (TPC-C [182], AuctionMark [76], and Seats [76]) Pesto performs competi-

tively with Peloton [77] and PostgreSQL [78], two unreplicated SQL databases, while

reducing latency by factors of 2.7x (TPC-C) and more compared to classic layered de-

signs (HotStuff [192]/BFT-Smart [176] + Peloton), and improving throughput by up to

2.3x (TPC-C). Microbenchmarks based on YCSB [39] further demonstrate that Pesto

significantly improves the performance of analytical queries compared to Basil, and re-

mains robust even in the presence of highly inconsistent or faulty replicas.

In summary, this chapter makes three contributions:

1. It presents a snapshot synchronization protocol that allows us to support arbitrary

query computation atop inconsistent BFT replication (§ 4.4.5).

2. It introduces a novel semantics-based Optimistic Concurrency Control (CC) pro-

tocol which is carefully integrated with inconsistent replication and snapshot

based execution (§ 4.5.1).

3. It presents and evaluates Pesto, a high performance distributed BFT DB that pro-

vides an interactive SQL transaction interface and can serve as a plug-and-play

solution for existing SQL-based applications.
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Roadmap The remainder of this chapter is organized as follows. Section 4.1 discusses

existing approaches to building BFT databases and their shortcomings. Section 4.2 for-

malizes Pesto’s correctness guarantees, and Section 4.3 outlines Pesto’s architecture.

We detail Pesto’s query execution protocol in Section 4.4, and its concurrency control

and commit protocol in Section 4.5. We discuss and prove Pesto’s correctness in Sec-

tion 4.6. Section 4.7 provides an evaluation of Pesto, Section 4.9 discusses related work,

and Section 4.10 concludes.

4.1 Towards expressive, high speed BFT Queries

Existing applications are built on a well-established Database (DB) stack that provides

high performance and enforces standard interfaces with rich query functionality. Devel-

opers are familiar with this stack and, we believe, would prefer to continue using it. In

particular, they expect support for (i) transactional semantics, (ii) an expressive query

interface, and (iii) built-in support for scaling workloads.

Transactions make it easy for developers to write bug-free code: they guarantee

that sequences of actions will take effect atomically in the presence of concurrency

or failures. Making transactions interactive (or general) allows for users to interleave

transactional/database access code as part of their application directly, rather than using

complex and cumbersome stored procedures, which are both hard to write and main-

tain [149]. SQL is the lingua franca today for data access and manipulation; it allows

for expressive querying and powers decades of legacy code. Finally, most applications

expect the ability to scale without having to reconfigure or rewrite the database. The

database must consequently support partitioning the data into shards for horizontal scal-

ability while safely supporting distributed transactions.
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4.1.1 Layering Databases atop Consensus

The most straightforward way to implement a BFT DB is to employ a BFT consensus

protocol (e.g., PBFT [30]) to first totally order all operations, and then ingest the log

into a DB engine of choice (e.g., PostgreSQL [78]). Since all operations are ordered via

consensus, the database at each replica will produce the same result. To execute (SQL)

queries, clients simply submit them to the replicated backend (server-side execution)

and wait for enough matching responses to confirm that at least one correct replica

vouches for the result. This ensures (i) data validity: the query execution used a correct

(valid) input state, i.e., every value read corresponds to a committed write, (ii) freshness

(bounded staleness): the query was computed using recent state, and (iii) query integrity:

given the input state, the query was computed correctly according to its specification.

Unfortunately, this seemingly simple design performs poorly.2 First, processing all

requests sequentially, even those that don’t conflict, is essential for ensuring consistency

among the states of correct replicas. However, this approach eliminates the inherent

parallelism of the workload. Sophisticated parallel execution engines [68] may recoup

some of the lost performance, but are complex and cannot avoid establishing an initial

total order. Second, interactive transactions may consist of several sequential requests,

each requiring several round-trips of coordination to achieve agreement, resulting in

high end-to-end latency. As a result, many existing systems [7, 8] limit transactions to

single-shot stored procedures that are notoriously unpopular with developers [149]. Fi-

nally, scaling transactions horizontally, e.g., via sharding, is inefficient, as layering two-

phase commit (2PC) on top of internally replicated shards requires ordering each 2PC

step. These fundamental limitations preclude practical deployments of this approach for

OLTP systems.

2Though layered SMR-based designs appear modular and easy to compose, this simplicity is deceptive
as a lot of complexity hides within the modules and their interplay.
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4.1.2 Basil: An integrated BFT key-value store

To address these challenges, recent work proposes an innovative order-free approach to

BFT-DBs. Basil [171], a serializable, distributed BFT key-value store (KVS), eliminates

the need for totally ordering requests. Instead, it combines concurrency control (CC),

replication, and two-phase commit (2PC) into a single, low-latency layer. In Basil, trans-

actions are independently managed by clients and proceed in parallel whenever possible.

Clients submit read operations (GET requests) to a subset of replicas and use their replies

to identify fresh and valid responses. These replies include a Commit-Proof, which ver-

ifies the validity of the write that generated the returned value and its version. Writes

(PUT requests) are buffered locally during transaction execution. To commit a transac-

tion, clients initiate an efficient two-step commit protocol that simultaneously validates

transaction execution results (to ensure serializability), computes a 2PC decision, and

durably replicates the agreed upon result. When clients fail to complete transactions,

Basil resorts to a cooperative recovery protocol that allows any client to recover and ter-

minate incomplete transactions. This integrated database design has shown to be highly

performant for a variety of popular OLTP workloads.

Basil, unfortunately, supports only GET operations: more complex, analytical queries

must explicitly be re-structured. This is undesirable, as it increases the burden on ap-

plication developers, and incurs coordination costs proportional to the size of a query’s

intermediate results. Consider a simple join query SELECT * FROM tblx, tbly WHERE

x = y spanning two tables tblx and tbly (with primary keys x and y, respectively), both

containing one million rows and overlapping in exactly one key. Executing this query

requires first identifying the size of the tables (it is unknown to the client), and then is-

suing one million reads to tblx and tbly respectively; only then can the client determine

locally the result, a single row.
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4.1.3 Introducing Pesto

Pesto strives to retain Basil’s performance and scalability while adding efficient support

for complex SQL queries. This requires addressing two key challenges:

(i) Pesto must guarantee validity, freshness, and integrity for query results; it exe-

cutes queries server-side, but requires that clients wait for enough matching replies to

ensure that at least one correct replica vouched for the result.

Like Basil, Pesto prioritizes performance by not ordering requests. This approach

carries a risk: even correct replicas may diverge during execution (e.g., due to high

contention) and produce different results. Pesto addresses this risk by introducing a

synchronization protocol that dynamically, and only when needed, establishes common

state snapshots (§ 4.4.5) for the current queries.

(ii) Pesto must ensure serializability for complex queries. Locking-based approaches

are a non-starter in a Byzantine setting, as malicious clients can block progress by re-

fusing to release their locks. Pesto must thus use optimistic concurrency control (OCC).

Unmodified OCC, however, typically struggles with large data scans. Pesto addresses

this issue by leveraging query semantics to create a novel semantics-aware OCC proto-

col that aborts transactions only if writes affect the result of concurrent queries, mini-

mizing conflicts (§ 4.5).

4.2 Model

Pesto inherits the assumptions of Basil [171] and prior BFT work [30, 101, 192]. Pesto

operates under partial synchrony [54]: it makes no timing assumption for safety, but for
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liveness depends on periods of synchrony.

Participants that adhere to the protocol are deemed correct while faulty (or Byzan-

tine) participants may deviate arbitrarily. A strong but static adversary may coordinate

the actions of faulty participants, but cannot break standard cryptographic primitives

such as hashes, MACs, or digital signatures. We assume clients to be authenticated, and

denote signed replica messages as 〈m〉σ.

Pesto, for safety, enforces Byz-serializability [171], which, summarized curtly, en-

sures that all correct participants observe a sequence of states consistent with some

sequential execution of the concurrent transactions. Byz-serializability on its own, how-

ever, does not ensure application progress; Byzantine actors could, for instance, still

collude to systematically abort all transactions. We thus additionally enforce Byzantine

independence [171]: in Pesto, no group of Byzantine participants may unilaterally de-

cide the outcome of any operation, and therefore transaction progress is not subject to

Byzantine abuse. To satisfy Byzantine independence, Pesto, like Basil, operates with

n = 5 f + 1 replicas, of which at most f may be faulty. Classic leader-based BFT

protocols with a replication factor of 3 f + 1 [30, 101, 192], in contrast, cannot pre-

serve Byzantine independence as a Byzantine client and leader may collude to front-run

transactions or strategically generate conflicting requests

We place no bounds on the number of faulty clients. As is standard, Pesto cannot

stop authenticated Byzantine clients from intentionally corrupting or deleting objects

through legitimate transactions. Like Basil, Pesto does not verify whether authenticated

clients adhere to the intended application semantics; instead it assumes that authenti-

cated clients can be held accountable by an external service retroactively. In future

work we aim to strengthen this property, and make access control fault tolerant as well
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4.3 Pesto Overview

Pesto is a high performance distributed BFT DB that offers traditional SQL capabil-

ities. It adopts the standard relational backend format of tables and rows, with rows

uniquely identified by primary keys. Pesto supports standard SQL commands: BEGIN,

read (SELECT, etc.), write (INSERT, DELETE, UPDATE, etc.), and COMMIT or ABORT. Trans-

action processing in Pesto, akin to Basil [171], follows the ethos of independent oper-

ability: execution is orchestrated by clients, and proceeds independently of all non-

conflicting transactions. Replicas employ inconsistent replication [171, 195] and forgo

totally ordering incoming requests; each replica may process client requests in any or-

der, and in parallel. Transaction processing consists of two phases (Fig. 4.1).

Begin

Read Write

Commit

Prepare Writeback

Stage 1 Stage 2
(Optional)

Decision
(Async)

Transaction Execution

Client Latency Start Client Latency End

Return to Client

Transaction Commit

Semantic
CC-Check

Get

Query

Buffer

recon

Snapshot

Figure 4.1: Pesto Transaction Processing Overview

Transaction Execution During execution, clients dynamically issue reads and writes.

Write operations, which are often conditional, begin with an initial reconnaissance read

to retrieve the rows to be modified. The client then modifies the target rows and buffers

them until commit (§ 4.4.2). Simple reads that access only a single row can be processed

via Basil’s GET protocol (§ 4.4.4) and complete in a single round trip. All other queries

(e.g., more complex queries that access a variable amount of rows) proceed through

Pesto’s Range read protocol (§ 4.4.5). This protocol ensures that clients collect enough

matching responses to assert that a correct replica confirms the result, thus ensuring

validity, freshness and integrity. In many cases, replicas have the same relevant rows
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to produce matching results; when they do not, a client must first synchronize replicas

on a common execution state via Pesto’s snapshot protocol (§ 4.4.5). In the absence

of failures, all (correct) replicas already eventually receive all data, and snapshots serve

only to rendezvous; when Byzantine clients fail to fully disseminate their transactions,

however, synchronization serves also as a recovery mechanism, ensuring that correct

replicas exchange missing data.

Transaction Commit Transactions can commit if they do not violate (Byz-) serializ-

ability. To check for this, replicas locally compare concurrent transactions to deter-

mine whether a reader has missed a concurrent conflicting write, or vice versa (prepare

phase). Crucially, Pesto leverages query semantics to determine which writes are poten-

tial conflicts: Pesto’s SemanticCC (§ 4.5.1) considers concurrent operations conflicting

only if a write affects a query’s results.

Pesto, like Basil, opts to make writes optimistically visible upon successful valida-

tion (prepared writes); this reduces the opportunity for conflicts by up to two round-trips

(the time to commit, discussed next), but requires carefully managing read dependencies

to uphold (Byz-) serializability (§ 4.4.4, § 4.4.5).

Different replicas may validate conflicting transactions in different orders, leading

to different votes. Two conflicting transactions, for instance, may both receive commit

votes from different sets of replicas. To ensure safety, Pesto’s Commit protocol (§ 4.5)

requires clients to gather enough votes to guarantee that for any pair of conflicting trans-

actions, at least one correct replica has validated both, resulting in the rejection of one

transaction. Because transactions may involve multiple shards, Pesto aggregates vote

tallies for each shard via Two-Phase Commit (Stage 1). For safety, this decision must

be preserved across runs. In failure-free executions, transactions may complete in one

round-trip, but an extra round-trip at a single shard is needed for durability if failures or
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network reordering arise (Stage 2). Finally, the client asynchronously notifies all repli-

cas of the decision during an asynchronous writeback phase. If the decision is commit,

a replica applies all buffered writes.

4.4 Transaction Execution

We first describe Pesto’s transaction execution protocol. Since much of the system’s

complexity lies in the efficient handling of range queries, we devote the bulk of the

section to this aspect.

4.4.1 Data structures

Pesto relies on two primary data structures, transactions and versions. Each version in

Pesto corresponds to a unique write (insertion, update or deletion) and contains, in ad-

dition to column data, metadata necessary for maintaining serializability (Algorithm 2).

Algorithm 2 Row version
1: ts . timestamp tsT of writing transaction T
2: id . transaction identifier idT = h(T )
3: status . enum:[commit, prepared]
4: col-vals . data values for each column; empty if deletion

Transactions receive a unique timestamp tsT B (localtime, ClientID, seq-no), se-

lected client-side upon BEGIN. This timestamp implicitly establishes the transaction’s

final serialization order and allows Pesto to evaluate conflicts according to the desig-

nated ordering (§ 4.5.1). To avoid abuse by Byzantine clients that choose to fabricate

large timestamps, replicas reject transactions that exceed their local clock RTime by δ or
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more, where δ adjusts for client ping latency and clock skew. Pesto does not depend on δ

for safety or liveness, though a well-chosen value can improve the system’s throughput.

Algorithm 3 Transaction T meta-data.
1: ts . transaction timestamp: (localtime,ClientID, seq-no)
2: ReadSet . (active) rows accessed: {(key, version)}
3: DepSet . read dependencies: {idT ′}

4: PredSet . read predicates: {pred} (§ 4.5.1)
5: WriteSet . buffered writes: {(key, col-vals)}
6: involved-shards . shards accessed: {shard-id}
7: id . transaction identifier: Hash(T )

A transaction T additionally stores metadata documenting its execution (Algo-

rithm 3). ReadSetT captures rows (and versions) accessed; DepSetT tracks read depen-

dencies on visible but uncommitted versions (§ 4.4.2); PredSetT tracks query predicates

(used for semantic concurrency control); and WriteSetT contains proposed row updates.

Upon COMMIT, T receives a unique identifier idT ; it is computed as a cryptographic hash

of T to prevent a Byzantine client from manipulating T ’s content—at worst, it can create

a new transaction, which it can anyway always do. A client may also explicitly ABORT a

transaction at any time before COMMIT, discarding all intermediate state without effect.

4.4.2 Serving Update Queries

We begin by describing how Pesto handles writes. As is standard in optimistic concur-

rency control, Pesto buffers writes locally until execution is complete. Doing so requires

additional care when dealing with SQL statements that are typically conditional, and in-

volve read-modify-write operations.

For example, an insertion only occurs if no row with the same primary key exists,

while updates (UPDATE tablex SET x = x + 1 WHERE x = 5) and deletes may depend on
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a predicate (e.g., DELETE FROM tablex WHERE x = 5). The rows to be written are thus

only known after execution.

To handle conditional writes, Pesto splits write processing into two steps. First, a

reconnaissance query fetches relevant rows Then, the client modifies or creates rows

based on the original write statement. This approach allows Pesto to use the query

interface to produce an intermediate query result and buffer new versions locally. For

each row written, Pesto inserts a new write-entry into its current transaction’s WriteS etT .

Pesto returns the number of rows written (possibly zero) to the application.

4.4.3 Servicing Reads

Reads in Pesto consist of SQL SELECT statements sent to replicas for execution. For

efficiency, Pesto distinguishes between two types of reads, automatically deduced at

runtime:

Point Reads read only a single row and explicitly identify the primary key of the table

(akin to GET requests). Consider, for instance, a table U with columns a, b, and c,

and composite primary key (a, b). The query SELECT * FROM U WHERE a = 5 AND b

= ’apple’ accesses the unique row with primary key (5, apple). Such reads can be

efficiently executed by Basil’s GET protocol (§ 4.4.4) and are guaranteed to complete in

a single round-trip.

Range Reads (including scans, aggregate functions such as Min, Max, and joins), may

instead scan through a variable (possibly unknown) number of rows. For efficiency,

Pesto delegates the execution of complex queries to replicas and tries to collect f + 1

matching results to assert that at least one comes from a correct replica (which ensures
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validity, freshness, and integrity).

While simple, this approach does not guarantee liveness: because Pesto does not

totally order operations at replicas, even correct replicas might not be consistent, and

produce different results. At the time of reading, replica R1, for example, may have just

inserted a new version with value a = 10 that is yet to be applied at R2; the two replicas

will report a different number of rows for a query that reads a.

Waiting for inconsistencies to resolve and retrying the execution is not a reliable

solution, as new concurrent writes can once again lead to mismatches. In fact, replicas

might never be fully consistent. Unfortunately, forcing replicas to synchronize on all of

their state is a non-starter, as that state can be large. Pesto instead uses a lightweight

snapshot synchronization protocol that allows replicas to materialize a consistent snap-

shot on demand, specific to a given query (§ 4.4.5).

Once a read operation completes, the Pesto client return the result Q-res to the ap-

plication.

We describe the details of both read protocols next.

4.4.4 Point Read Protocol

To execute a point read, clients request valid versions from a quorum of replicas and

select the freshest.

1: C→ R: Client C sends read request to replicas.

C sends a read request point-read B 〈key, Q, tsT 〉, containing the SQL query Q, the

primary key it touches, and the transaction timestamp, to at least 2 f + 1 replicas.
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2: R→ C: Replicas process the client read and reply.

Replica R executes the submitted query Q and returns a result message point-resp B

〈Q-res, Committed, Prepared〉σR . This response contains, respectively, the latest com-

mitted and prepared versions of the row identified by key with timestamps less than tsT ,

if any exist. If these versions do not satisfy Q’s predicate, R still returns a version, but

indicates that the result Q-res is empty. Tracking this version is necessary to ensure

serializability during the commit stage.

Committed ≡ (version, c-cert) additionally includes a commit certificate c-cert

(§ 4.5.2) proving that version has committed, while Prepared ≡ (version, idT ′) includes

a digest identifier for the prepared transaction T ′ that wrote version.

3: C← R: Client C receives read replies.

C waits for at least f +1 replies to ensure that it receives at least one correct response

and extracts the highest-timestamped version that is valid: a committed version must

contain a valid c-cert, while a prepared version (and result Q-res) must be returned

by at least f + 1 replicas. This guarantees (i) that C’s transaction does not become

dependent on fabricated versions, and (ii) that C returns a version no staler than if it had

read from a single correct replica. Finally, C confirms Q’s result Q-res on the committed

version itself, since replica-side computation is untrusted and Q may involve additional

processing beyond simply reading the key—such as applying predicates or projections.

C returns Q-res to the application and adds the selected (key, version) to its ReadSetT .

If version was only prepared, C additionally records a dependency DepSetT .insert(idT ′)

which will be used during T ’s Prepare phase to ensure (Byz-) serializability; T must not

commit unless all the transactions in DepSetT commit first.
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4.4.5 Range Read Protocol

Overview Processing arbitrary queries that may compute on ranges of rows requires

additional care. To ensure validity, freshness, and integrity, a client must receive at least

f +1 matching query results; this ensures that at least one correct replica vouches for the

result. This is only reliable when correct replicas share the same state, which Pesto, by

design, does not enforce for performance. Nonetheless, we observe that rows touched by

a query often reflect state conistent across all correct replicas (§ 4.7). When they do not,

Pesto creates its own luck by synchronizing replicas only on the rows accessed to agree

on a common snapshot for the query. In fault-free cases, all (correct) replicas already

eventually receive all data, and snapshots serve only to rendezvous; when Byzantine

clients fail to fully disseminate their transactions, however, synchronization serves also

as a recovery mechanism, ensuring that correct replicas exchange missing data.

Implementing the snapshot mechanism requires answering two questions: (i) What

state should a snapshot contain and (ii) how to ensure that the snapshot proposal repre-

sents an up-to-date and valid state?

To compute a snapshot of a consistent state, Pesto uses the set of transaction id’s

associated with the row versions that were read. This set uniquely identifies a specific

state, and ensures atomicity (transactions are either included or not).3 Individual row

versions alone do not ensure atomicity, as Byzantine voters may selectively include

versions. While this attack would be caught at commit time and thus not violate Byz-

serializability, it would violate Byzantine independence!

Recording metadata for every row accessed during execution is often overly con-

servative. Most queries are predicated on a filter (e.g., name = ’Peter’), and require

3Moreover, as transactions usually write to multiple keys, this set is typically smaller than the set of
individual read versions.
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only agreement on the set of rows relevant to the result (i.e., those with name ’Peter’,

Figure 4.2). Pesto leverages this to include in its snapshots and read sets only the rows

whose (latest versions) fulfill the query predicate (dubbed active rows). In most work-

loads, read predicates are highly selective and thus the set of active rows is usually small;

this improves efficiency, and makes execution more likely to succeed as there are fewer

opportunities for inconsistency.

Computation of active rows aligns naturally with index-based execution used in tra-

ditional SQL databases, which leverages predicates to reduce the number of rows that

need be accessed (reducing query execution time by orders of magnitude) [164]. Pesto

simply piggybacks on this strategy: since index search conditions are a subset of the

query predicate, index scans will access all rows that affect the query result. We ex-

pand on the concept of active rows in § 4.5.1; they form the basis of Pesto’s semantic

concurrency control.

Protocol Details We next outline the details of the protocol. We do omit several pedantic

details that impact our final implementation. Most readers will be happier skipping

these details during their initial read; we defer rigorous correctness proofs, as well as

additional discussion of details to Sections 4.6 and 4.8, respectively.

For simplicity, we assume that queries are satisfied by a single shard and that

clients know the partitioning scheme. However, transactions may span multiple shards.

Figure 4.2 illustrates an example execution. We briefly discuss distributed queries in

Section 4.8.5.

1: C→ R: Client C sends read request to replicas.

C sends a read request range-read B 〈Q B Query, tsT 〉 to at least 3 f + 1 replicas

(to ensure at least 2 f + 1 replies).
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Figure 4.2: Life of a query (eager path disabled). The client broadcasts a query to a quorum of
replicas who compute the query on their local state. Replicas return their query result (Q-res),
their (active) read set (Q-read)—the rows that fulfill the query predicate—, and the associated
snapshot vote (SS-vote). The client aggregates a snapshot proposal (SS-prop) and synchronizes
replicas on a common execution state.
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2: R→ C: Replicas process the client’s read and reply.

A replica R executes the query Q on its local state (reading only versions no later

than tsT ), and produces a query result Q-res. For concurrency control purposes, R adds

the active (key, version) pairs accessed during the computation (at most one version per

key, the freshest version read) to a query read set Q-read. In Figure 4.2, for instance,

replicas record their latest version for the active key ’Parker’. If a given version is

only prepared (i.e., tentatively committed), R additionally records a dependency on the

version writer T ′, Q-dep.insert(idT ′). Pesto’s validation check uses this information to

ensure that Q observes only serializable state.

Finally, R records as snapshot vote SS-vote the set of all transaction identifiers (idT∗)

associated with the read set

R replies with range-resp-ss B 〈Q-res, Q-read, Q-dep, SS-vote〉σR.

3: C← R: Client C receives read replies.

Eager Path C waits for up to 2 f + 1 replies and tries to assemble f + 1 distinct replies

with matching Q-res and Q-read, and valid dependencies Q-dep (we defer discussion

of the latter to a separate Section titled "Managing Dependencies"). This ensures that

at least one correct replica vouches for the result and read set, which is necessary to

correctly enforce serializability during validation.

If successful, C considers the read complete: it returns Q-res to the application, and

respectively adds Q-read and Q-dep to its ongoing transaction’s ReadSetT and DepSetT .

Snapshot Path If C cannot successfully complete a read, it enters the snapshot path.

C tallies the snapshot votes and tries to propose a common execution state. To ensure

liveness, a correct client must only propose to include transactions that exist, lest risk
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failing synchronization between replicas. Pesto must also ensure that faulty participants

cannot cause a snapshot proposal to be artificially stale, as this would artificially extend

the transaction’s conflict window, making it much more likely to abort.

4: C→ R: Client C proposes a snapshot to the replicas.

To generate a snapshot proposal, C selects all transaction ids present in f + 1 SS-

votes and merges them into a proposal SS-prop B {(idT∗, {r})}, along with the ids of

the replicas that suggested them. This filtering procedure ensures data validity: the set

contains only transactions that at least one correct replica believes to be committed or

prepared. In Figure 4.2, only t3 passes the filter.

Waiting to receive at least 2 f + 1 snapshot votes bounds staleness as it ensures that,

if all correct replicas had this transaction in their state, this transaction will pass the

filter and thus be included in the snapshot proposal ( f + 1 proposals out of the 2 f + 1

necessarily come from correct replicas).

C then sends its SS-prop to at least 3 f + 1 replicas.

5: R: Replicas process the snapshot and execute.

Upon receiving a snapshot proposal SS-prop, a replica R checks whether it has al-

ready applied all included transactions: a transaction T ′ is considered applied once it has

either (i) been explicitly aborted, or (ii) all of its write versions have been inserted into

the respective rows. A replica might have received a transaction with idT ′ ∈ SS-prop,

but not yet applied it; query execution must wait for T ′ to be fully applied.

Synchronization If R has not yet applied a transaction T ′ in the snapshot proposal, it

fetches it from its peers by sending a sync message containing idT ′ to the f + 1 replicas

that included the T ′ in their SS-vote.
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5.A: R→ R: Replicas process a sync request and supply the transaction.

A correct replica ignores synchronization request for transactions it does not have.

If a replica has T ′, it returns a message supply B (T ′, status, (c-certT ′/a-certT ′)),

containing T ′, T ′’s current commit status, and, if T ′ has completed, its commit/abort-

certificate. If C is correct and created its SS-prop truthfully, then at least one voting

replica is correct and will supply T ′. If C is Byzantine and fabricated its SS-prop, then

synchronization will fail, affecting only the liveness of C’s own query Q.

5.B: R← R: Replicas process and apply a supplied transaction.

R processes supplymessages according to the commit status, accepting and applying

committed and aborted transactions after verifying the associated proof. If the decision

is abort, R removes the transaction from any snapshot proposal it received; this may

cause replicas to synchronize inconsistently (some replicas may not observe the abort)

but is necessary as reading an aborted version will cause the query to abort too. Applying

a transaction T ′ that is only prepared requires additional care. To uphold safety, R must

not blindly prepare T ′: R might (due to inconsistency) detect a conflict that R′ did not.

To maximize consistency, however, Pesto opts to allow Q to read T ′ regardless of its

validation outcome; after all, at least one correct replica part of SS-prop considered T ′

prepared (or committed). Should T ′ fail validation, R applies T ’s write versions but

makes them visible exclusively to Q.

Execution Once R has applied all transactions in SS-prop it executes Q. During ex-

ecution, a replica tries to read the freshest version associated with a transaction idT ′

included in SS-prop (i.e., v3 associated with t3 in Fig. 4.2). If the snapshot contains no

version for a key accessed (this may happen, for instance, if a new relevant row is in-

serted after recording the SS-vote’s) a replica simply reads the freshest commit version.

In some cases, this is even preferable if the snapshot does have a version: if the fresh-
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est committed version is newer than the latest version in the snapshot, insisting on the

snapshot may result in reading a stale version, ultimately causing the query’s transaction

T to abort. Reading the fresher committed version is thus often preferable. This may

cause the client to not receive matching results; however, retrying only the query (and

doing so early) is more cost-effective than continuing execution, and aborting the full

transaction later.

R adds its chosen read version to Q-read, and if the version has status prepared, it

adds the versions’ writer idTw to Q-dep.

R returns a read reply range-resp B 〈Q-res, Q-read, Q-dep〉σR.

6: C← R: Client C receives read replies.

C considers a read successful upon receiving f + 1 replies with matching Q-res and

Q-read, and valid Q-dep (§ "Managing Dependencies"), as before. Because results can

be legitimately inconsistent (e.g., due to newer committed versions) C waits for up to

2 f + 1 replies to guarantee that at least f + 1 are correct (and thus do not fabricate

inconsistency).

If C fails to receive matching replies, it restarts the snapshot path (by requesting a

new set of SS-votes), and retries query execution.

Managing Dependencies

Pesto allows queries to read prepared versions but, for safety, must ensure that correct

clients record dependencies. To maintain liveness, however, a client C must avoid in-

cluding fabricated dependencies (or risk never completing its transaction). This raises a

conundrum: C cannot afford to ignore legitimate dependencies, yet it should only accept
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dependencies that are vouched for by one correct replica. Unfortunately, while f + 1

replicas may agree on the read set Q-read, their Q-dep’s might differ: some (correct)

replicas may consider a candidate dependency idT ′ already committed and not include it

in Q-dep.

To determine whether to include a dependency C requires either (i) evidence that the

dependency really exists, or (ii) evidence that a correct replica deems it already com-

mitted (and thus it need not be tracked). C can assert case (i) if a candidate dependency

idT ′ appears across any f + 1 Q-dep’s or SS-vote’s. Note that here, we do not require the

result Q-res nor read set Q-read to match as C is only interested in gathering evidence

for idT ′ . If instead, C is unable to acquire evidence for idT ′ , but gathers at least 2 f + 1

matching results it can conclude that at least one correct replica deems the dependency

unnecessary because T ′ has already committed (case (ii)). If C can do neither, it cannot

conclude legitimacy of the dependency, and must wait for additional replies (or retry the

query).

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {t3}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {...}

Q-RES: {Mouse}
Q-READ: {(Mouse, v2)}
Q-DEP: {t3}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {t3}
SS-Vote: {…}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {t3}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {t3}

Q-RES: {Mouse}
Q-READ: {(Mouse, v2)}
Q-DEP: {∅}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {...}

(C) 2f+1 matching results, 
       but < f+1 deps(A) f+1 deps (B) f+1 deps or SS-Votes

Figure 4.3: Illustration of the three criteria for determining dependency validity

An Example Figure 4.3 illustrates the three criteria. A dependency dep is valid only if

it is vouched for by at least one correct replica. In the simplest case (not shown), there

exist f + 1 replies that have matching query result (Q-res), matching read set (Q-read),
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and matching dependency set (Q-dep). However, this may not be guaranteed, as some

(correct) replicas may consider dep already committed and not include it in Q-dep. To

nonetheless determine the validity of dep, Pesto allows clients to check also the Q-dep’s

and snapshot votes (SS-vote) reported by other replicas that do not have matching Q-res

or Q-read.

In Figure 4.3, example A, for instance, the dependency t3 is only recorded in one of

the first two matching replies (they have matching Q-res and Q-read); yet we require

f + 1 = 2 dependency references to t3. t3 is, however, present in the third (inconsistent)

reply, enough to conclude that f + 1 replicas deem t3 a valid dependency. Similarly, in

example B, t3 is only recoreded in Q-dep of a single replica, but it is also present in the

SS-vote of another reply.

In some cases, dependencies may be valid but need not be recorded: if a client is

certain that at least one correct replica deems the dependency unnecessary (for example

because it has already committed the transaction), then we can ignore the dependency.

In Figure 4.3, example C, for instance, all three replies match, but f + 1 replicas report

no dependencies. Consequently, at least one correct replica deems dep unnecessary.

If a candidate dep cannot be found f + 1 times, nor safely considered unnecessary,

then a correct client must consider the reply containing dep invalid and either wait for

additional replies, or retry.

4.5 Transaction Commit

Once a transaction T completes execution, the client begins the commit process. Pesto

adopts the core Basil [171] commit protocol, which we summarize for completeness
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(§ 4.5.2). Unlike Basil, however, Pesto’s concurrency control must efficiently and safely

handle range queries; to this end, Pesto introduces a novel semantic based concurrency

control, reminiscent of precision locking [92]. We first discuss how replicas locally

perform validation. We then outline how clients aggregate individual replica votes to

ensure (Byz-) serializability across replicas in a durable manner.

4.5.1 Concurrency Control (CC) Check

A replica votes to commit a transaction if the operations executed at that replica yields

a serializable schedule. To check this, Pesto takes as starting point Basil’s MVTSO

algorithm. Each transaction is assigned a unique timestamp that predetermines its global

serialization order. Transactions read the version with the highest timestamp still smaller

than their own. In order to commit, no transactions may miss a write that they should

have observed. As part of a validation phase, MVTSO checks transactions for pairwise

conflicts: if a reading transaction TR observed version v for key r, but a newer version v′

(< tsTR) now exists, then TR must abort.

This approach works well for point reads as only a single row is involved (and

changes to the row’s values likely affect the result returned). It does not, however,

extend gracefully to range reads. Consider the transaction T in Figure 4.2 that issues

a simple scan operation Q B SELECT last FROM people WHERE name = ’Peter’ to a

non-primary key name, and which returns as result only a single row (’Parker’).

For safety, T should record in its ReadSetT all rows present in table people as con-

current transactions might change the contents of any rows name column to ’Peter’.

In this particular example, T must additionally include a meta-data version on the table

itself in order to prevent the concurrent insertion of new rows. Note that this example is
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not specific to Pesto’s range reads but applies, of course, also queries explicitly written

only using point reads.

To avoid Phantom Read anomalies [18], T must abort if even a single row in people

is concurrently inserted, updated, or deleted; to commit, T must effectively acquire a

(logical) lock on the entire table.

One can do better. A concurrent write that updates row ’Alice’ to ’Allie’ does

not affect the result of Q, and thus does not violate serializability. Taking into account

query semantics can significantly reduce the number of rows that need to be considered

for range reads. Pesto leverages this idea to implement a semantics-aware CC check that

determines whether concurrent writes affect the read predicate.

Read predicates

To implement semantisc-aware CC for queries, Pesto uses an approach common in

databases. Each query (or sub-query) is broken into an operator tree with leaves consist-

ing of full or partial table scans and an associated filter predicate (e.g., name = ’Peter’).

This allows Pesto to determine transaction conflicts by checking whether a write satis-

fies the filter predicates of a concurrent reader query (which may include multiple pred-

icates). If yes, the write could be part of the read result. We find that filter predicates, in

practice, account for the brunt of query selectivity, and only rarely unnecessarily abort

writes that meet the filter criteria but do not change the end query result. Crucially, how-

ever, using filter predicates ensures that Pesto will never miss a write that does affect the

query result.

Nested operations can, depending on the size of intermediary results, be represented

either as coarse individual scans, or as multiple instantiations. Consider a simple query
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that joins two tables SELECT * FROM tblx, tbly WHERE x.name = ’Peter’ AND x.id

= y.account, and, because tblx has only a few rows with name ’Peter’ (one, in our

example from Fig. 4.2), chooses to perform a Nested Loop Join [133]. Rather than

deriving only two predicates Tblx : x.name = ‘Peter‘ and the very coarse Tbly : True,

Pesto opts to instantiate, for each row r in the intermediary result of the sub-query

(SELECT * FROM tblx WHERE x.name = ’Peter’), a predicate Tbly : x.id =< r.id >.

Algorithm 4 summarizes the read predicate structure. We defer a discussion of Table

Versions to Section "Making semantic CC efficient"; they serve only to improve the

efficiency of transaction validation.

Algorithm 4 Read Predicate P.
1: table . The Table accessed
2: tableV . The Table Version at time of access
3: pred . The filter criteria, e.g., x =? ∧ y > 5
4: instantiations . Value instantiations, e.g., x ∈ {1, 7, 8}

Adjusting Range Reads We adjust the read replies (§ 4.4.5) sent by replicas to include

the set of filter predicates Q-pred associated with the query; replicas return a message

〈Q-res, Q-read, Q-dep, Q-pred〉σR containing the query result, read set, dependency

set, and set of predicates. Recall that replicas might have inconsistent state, and thus

might instantiate different predicates for filters in nested queries: e.g., the inner predicate

of the query SELECT names WHERE age = (SELECT age WHERE last = ’Parker’) de-

pends on the age of Peter Parker. A client considers a read successful only if f + 1

replies have matching Q-preds. If so, it adds Q-pred to its PredSetT . This ensures that

the recorded predicates are correct, and will safeguard serializabillity during the CC-

check.
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A simple, semantics-aware CC check

Given a read predicate P, Pesto distinguishes between the active read set (ARS)—all

(key, version) pairs that fulfill P (the active rows, stored in Q-read)—and the passive

read set—all other rows. Point reads, by design, only read active rows. Intuitively, the

ARS captures all rows that are relevant to a read’s computation (i.e., contribute to the

query result Q-res). The passive read set is implicit, and need not be tracked.

To enforce Byz-serializability Pesto needs to ensure that the ARS is fresh and com-

plete: (i) versions within the ARS are the most recent, and (ii) the ARS does not miss

any relevant rows.

Algorithm 5 summarizes Pesto’s CC-check; we defer formal safety proofs to Sec-

tion 4.6. A replica R first performs some sanitization: it rejects transactions whose

timestamps are too high (Line 1) or that claim possibly fabricated dependencies (Line

5). This ensures that Byzantine issued transactions do not disrupt progress of concurrent

transactions. Replicas additionally reject transactions whose writes are non-monotonic

(Line 3); we defer explanation to Section "Making semantic CC efficient". Next, a

replica checks for serialization conflicts.

• Read Conflicts R first checks that T ’s ARS is fresh (Lines 7-9): there does not

exist a write from a committed or prepared transaction T ′ that (i) is more recent

than the version read by T and (ii) whose timestamp is smaller than tsT (and thus

should have been observed by T ).

R then checks that T ’s ARS is complete: for each predicate P, R determines if

there exists a preceding write w from a transaction T ′ (tsT ′ < tsT ) that (i) is not

in T ’s ARS, (ii) is the freshest version visible to T , and (iii) fulfills P, and thus

should have been in T ’s ARS (Lines 11-14). If w does not fulfill P, but T ′ is
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Algorithm 5 SemanticCC-Check(T )
1: if tsT > localClock + δ
2: return Vote-Abort
3: if ¬isMonotonicWrite(T)
4: return Vote-Abort
5: if ∃ invalid d ∈ DepS etT

6: return Vote-Abort
7: for ∀key, version ∈ ReadSetT

8: if version > tsT return MisbehaviorProof
9: if ∃T ′ ∈ Committed ∪ Prepared : key ∈ WriteSetT ′

∧ version < tsT ′ < tsT

10: return Vote-Abort, optional: (T ′, T ′.c-cert)
11: for ∀P ∈ PredSetT

12: if ∃T ′ ∈ Committed ∪ Prepared :
(P.tablev − grace) < ts′T < tsT ∧

∃w ∈ WriteSetT ′ .
w.key < ReadSetT ∧ @w′ : tsT ′ < w′.TS < tsT :

13: if P(w.col-vals)
14: return Vote-Abort, optional: (T ′, T ′.c-cert)
15: if ¬P(w.col-vals) ∧ riskyPrepared(T ′, w)
16: DepS etT .insert(T ′)
17: for ∀key, col-vals ∈ WriteSetT

18: if ∃T ′ ∈ Committed ∪ Prepared.tsT < tsT ′:
ReadSetT ′[key].version < tsT∨

(key < ReadSetT ′ ∧ ∃P ∈ PredSetT ′ : P(col-vals))
19: return Vote-Abort, optional: (T ′, T ′.c-cert)
20: Prepared.add(T )
21: � wait for all pending dependencies
22: if ∃ d ∈ DepS etT : d.decision = Abort
23: Prepared.remove(T )
24: return Vote-Abort
25: return Vote-Commit
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only prepared, additional care is necessary: if T ′ were to abort and reveal (as next

freshest write) a write w′ (tsw′ < tsw) that does fulfill P, then T may need to abort

after all. In this case, R dynamically adds T ′ to DepSetT (Lines 15-16). We defer

discussion of P.tablev and grace to Section "Making semantic CC efficient".

• Write Conflicts Writes are checked analogously. R checks that writes of T do not

cause reads of a prepared or committed transaction T ′ to miss a version (Lines

17-19): R checks that (i) the ARS of T ′ remains fresh, and that (ii) T ’s writes do

not render the ARS of T ′ incomplete.

If R detects a direct conflict during validation, it immediately votes to abort T . Oth-

erwise, if no conflicts are found, R prepares T and tentatively makes its writes visible

to concurrent readers (Line 20). For safety, T may only commit if all of its read depen-

dencies commit first (Lines 21-15). R therefore waits for these dependencies to resolve:

it votes to commit T if all dependencies commit; otherwise it votes to abort T and rolls

back T ’s tentative writes.

Making semantic CC efficient

Ensuring freshness for active reads is simple: it suffices to check for conflicts between

the version read by T and tsT . Ensuring completeness is less obvious: a newly arriving

transaction T ′ that has a very old timestamp (tsT ′ << tsT ) may still insert a new relevant

row (or update the latest version of some relevant row), and thus must be validated

for potential conflicts. To uphold safety, when a new transaction arrives, a replica R

must therefore either (i) re-execute all of T ’s queries or (ii) check for conflicts against

all transactions that ever wrote to the table; both of which are impractical (and can be

exceedingly costly).
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Re-introducing ordering We solve this problem by attaching, for each read predicate P

of a transaction T , a concise summary of the (write) transactions that already happened

prior to the read, and whose effects are thus included as part of the query result. Specif-

ically, Pesto records a timestamp of the (then) latest write to the given table, denoted

table version (P.tablev), and guarantees that all transactions with timestamp lower than

P.tablev are not conflicting (they are either part of the query result, or not relevant). As a

consequence, R need only inspect the remaining transactions between P.tablev and tsT .

Pesto enforces this invariant through write monotonicity: a new transaction T ′ may only

write to a table if its timestamp is greater than any previously recorded table version

(i.e., is monotonic). Non-monotonic writers must be aborted (Alg. 5, Lines 3-4).

To implement this idea, we make two adjustments to Pesto’s read protocol.

Hardening Range Reads First, Pesto must enforce monotonicity not only within one

replica but across all replicas. Specifically, Pesto must ensure that the table version in-

cluded part of a query reflects the latest committed transaction at any replica. By design,

reads that miss fresher committed versions will be caught by Pesto’s CC’s freshness

check. Table versions are different. They are the mechanism that ensures that current

transactions are validated against all possibly concurrent conflicting transactions.

Our range read quorums (which require f + 1 matching replies, see § 4.4.5)—

previously not required to intersect with transactions’ commit quorums (§ 4.5)—must

now be modified to intersect with these commit quorums in at least one correct replica.

This requires clients to obtain table versions (and associated results) from at least 3 f + 1

replicas. This ensures that any relevant version with TS < P.tablev is either (i) already

applied, and thus observed by the query, or (ii) arrives only after updating the replica-

local table version to P.tablev, and thus is aborted (it is non-monotonic).
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While 3 f + 1 matching results are required for completeness, it is not strictly nec-

essary to obtain 3 f + 1 matching read sets. As before, f + 1 matching read sets suffice

to ensure that the selected read set is vouched for by a correct client (i.e., it is not fab-

ricated) and that it matches the query result. However, in practice, it is prudent to also

check that all 3 f +1 replicas agree on the read set: although multiple read sets may yield

the same result, stale ones may increase the likelihood of abort.

Table versions are only a coarse summary of the state, so two different (correct)

replicas may return the same query result (Q-res) and (active) read set (Q-read) while

reporting different table versions. To tolerate this, Pesto allows clients to complete range

reads without matching table versions, and, for safety, simply selects the smallest table

version as P.tablev. Byzantine clients may try to exploit this and report fabricated low

versions. This does not affect safety, but makes CC-checks slower, as a larger range

needs to be checked (even though it is not necessary for safety). To mitigate this, correct

clients may discard replies with table versions that deviate significantly from the f +

1st smallest reported version. Similarly, correct replicas may reject transactions whose

reported predicate table versions are too low relative to the transaction’s timestamp.

Accurately Representing Snapshots Second, Pesto must ensure that table versions ac-

curately reflect the state read using snapshots. Consider a query that, in an attempt to

read from a snapshot, reads a version several timestamps older than the freshest version

of the row. For safety, Pesto must check for conflicts with concurrent transactions writ-

ten since the read version, including, in particular, the versions that were skipped over

(e.g., a recent prepared version that was not included in the snapshot proposal SS-prop).

Replicas thus report as P.tablev the minimum of the local table version and one less than

the timestamp of the oldest encountered skipped version, ensuring it is included in the

CC check. Concretely, P.tablev = min(table version,min({tsskipped} − 1)).
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Relaxing Write Monotonicity Write monotonicity, in its simplest form, is overly harsh

on writers: it does not account for varying transaction execution durations (recall, times-

tamps are selected at transaction begin), which may result in aborts for any “late” writ-

ers. To avoid this, Pesto relaxes the monotonicity requirement by adopting a sliding

window approach. Replicas accept all transactions within the monotonicity thresh-

old and a grace period, and accordingly validate a predicate P against writes between

P.tablev − grace and tsT (Alg. 5, L. 12.1).

Grace periods offer a tradeoff. Larger grace periods offer writers more slack (re-

ducing aborts), but may cause preparing readers to unnecessarily validate against trans-

actions that were already part of their read state. Pesto attempts to soften this tension

by distinguishing two grace tiers: (i) A first, short grace period reflects the assumption

that most concurrent transactions arrive within close proximity, and requires validation

against all transactions within the range. (ii) A second, larger grace period, captures

(hopefully less frequent) longer or delayed transactions, and only validates against non-

monotonic arrivals. Configuration of the grace periods does not affect safety, but if well

chosen can improve performance.

4.5.2 Commit Coordination

Pesto adopts Basil’s commit protocol, which was in detail in Chapter 3. We re-

summarize it here for completeness.

Commit is entirely client-driven, and proceeds in two phases.

Prepare In the prepare phase the client submits its transaction T to all involved

shards for validation. Replicas within a shard independently perform the local con-
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currency control (CC) check (Alg. 5), voting on whether committing T will violate

Byz-serializability. Notably, replicas may process transactions in different orders, and

thus even correct replicas may vote differently. The prepare phase ensures mutual ex-

clusion, that no two conflicting transactions may both commit. To this end, the client

tallies the replica votes of each involved shard into a single shard-vote. A transaction

is deemed committable only if enough replicas vote to commit such that no conflicting

transaction will ever also become committable. For transactions that access multiple

shards, the client additionally aggregates shard-votes as part of a two-phase commit

(2PC) protocol: T commits if all shards vote to commit, and aborts otherwise.

The prepare phase consists of two sub-stages. In stage st1, the client collects, for

each shard that T accesses, commit or abort votes from all of the shard’s replicas. These

votes are then used to make the 2PC decision. If the client receives sufficiently many

votes to conclude that the 2PC decision will remain durable across failures, it proceeds

immediately to the writeback phase.

A shard-vote is considered durable iff it can be independently retrieved by any client

(i.e., any vote tally quorum produces the same decision). Durable shard votes form a

vote certificate v-cert B 〈idT , S , Vote, {st1r}〉; we dub shards with v-cert fast, and

shards without slow. Shard-votes are tallied as follows:

1. Commit Slow Path (3 f + 1 ≤ commit votes < 5 f + 1): The client has received at

least a CommitQuorum (CQ) of votes, where |CQ| = n+ f +1
2 = 3 f + 1 Vote-Commit.

2. Abort Slow Path ( f + 1 ≤ abort votes < 3 f + 1): A collection of f + 1 abort votes

constitutes the minimum AbortQuorum (AQ) that preserves Byzantine independence.

Pesto clients are guaranteed to observe (at least) either a CQ or an AQ (of size 3 f + 1

or f + 1 respectively).

3. Commit Fast Path (5 f +1 commit votes): No replica reports a conflict, and thus any
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possible quorum of size n − f will contain sufficiently many commit votes to form a

CQ.

4. Abort Fast Path (3 f + 1 ≤ abort votes): T conflicts with a prepared transaction, and

no other quorum can receive sufficiently many commit votes to form a CQ.

5. Abort Fast Path (One abort vote with a c-cert for a conflicting transaction T ′). T

(provably) conflicts with a committed transaction; any quorum will conclude abort.

C decides to commit T if all shards vote to commit, and otherwise aborts T . If all

shards voting to commit (or analogously if a single shard voting to abort) are fast (and

thus the votes are durable), C aggregates the respective v-cert’s and proceeds immedi-

ately to the writeback phase. If a single committing shard is slow (or the one aborting

shard is slow) C must first complete Stage st2. Rather than make the votes of slow

shards durable, Pesto opts to replicate the tentative 2PC decision. To do so, C selects

one of the involved shards, henceforth denoted as S log, and logs on it the decision; S log

is chosen deterministically depending on T ’s id. C records a single durable v-certS log:=

〈idT , S , decision, {st2r}〉.

In the absence of failures and contention, Pesto’s fast-path allows clients to commit

a transaction in a single round-trip; otherwise, one additional round-trip is required.

Writeback Once the decision is durable, C notifies its application of T ’s

outcome, aggregates shard votes into a decision certificate c-cert/a-cert B

〈idT , decision, {v-certS }〉 (commit or abort, respectively), and asynchronously informs

all involved shards. On the fast path, c-cert consists of the commit v-cert’s from all

involved shards, while an a-cert need only contain one shard’s abort v-cert. On the

slow path, both c-cert/a-cert simply include v-certS log . Replicas that commit T create

new version for each written row. Additionally, replicas notify pending dependencies

(transactions that read only prepared values of T ) on the outcome of T .
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Recovery In case of client failures, a cooperative Fallback protocol allows other clients

to terminate ongoing transactions. We defer details of recovery to Basil, presented in

Chapter 3; they do not affect how Pesto processes queries.

4.6 Correctness

We show that Pesto upholds Byz-serializability and Byzantine independence.

Byz-serializability captures Pesto’s safety requirement: it ensures that all correct

participants observe a serializable state. While Byzantine participants may choose to

view a non-serializable state, they cannot compromise the safety of correct participants.

We note that liveness, in a traditional sense, does not apply to general-purpose in-

teractive transactions. Whether a transaction commits depends on runtime contention

and concurrency—factors outside the protocol’s control. Transactions facing contention

may need to abort and retry; avoiding aborts with certainty requires a-priori knowl-

edge of a transaction’s read and write sets, which is generally unavailable for interactive

transaction workloads. Nonetheless, Pesto is designed to make as much progress as

possible. In particular, transaction progress should be decoupled from Byzantine be-

havior. Byzantine independence formalizes this requirement: no operation—especially

transaction outcomes—should be unilaterally determined by Byzantine participants.

Additionally, Pesto should ensure progress in the absence of contention. Specifi-

cally, if no new contending transactions arrive concurrently, all ongoing (correct clients’)

transactions should eventually commit. To model this scenario, we assume a contention-

free time tCF after which no further conflicting transactions are submitted. We show that

under this condition, Pesto guarantees transaction commit after tCF .
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4.6.1 Definitions

For completeness, we restate the formal definitions of Byz-serializability and Byzantine

independence introduced in Chapter 3.

A transaction T contains a sequence of read and write operations terminating with

a commit or an abort. A history H is a partial order of operations representing the

interleaving of concurrently executing transactions, such that all conflicting operations

are ordered with respect to one another. A history satisfies an isolation level I if the set

of operation interleavings in H is allowed by I.

Additionally, let C be the set of all clients in the system; Crct ⊆ C be the set of all

correct clients; and Byz ⊆ C be the set of all Byzantine clients. A projection H|C is the

subset of the partial order of operations in H that were issued by the set of clients C .

Definition (Legitimate History) History H is legitimate if it was generated by correct

participants, i.e., H = HCrct.

Definition (Correct-View Equivalent) History H is correct-view equivalent to a his-

tory H′ if all operation results, commit decisions, and final object values in H|Crct match

those in H′.

Definition (Byz-I) Given an isolation level I, a history H is Byz-I if there exists a

legitimate history H′ such that H is correct-view equivalent to H′ and H′ satisfies I.

Pesto specifically guarantees Byz-serializability.

Definition (Byzantine Independence) For every operation o issued by a correct

client c, no group of participants containing solely Byzantine actors can unilaterally

dictate the result of o.
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Notation In the following we refer to the unique identifier of a row as the row-key. In

practice, this is a unique encoding of the rows primary key. For each row-key, there may

exist multiple row-versions, each corresponding to the write of a unique transaction.

4.6.2 Correctness Sketch

We adopt and extend Basil’s proof of Byz-serializability to Pesto. It proceeds in four

steps:

First, we prove that Pesto’s concurrency control ensures that each correct replica

generates a locally serializable schedule. We adopt Adya’s formalism here [4]: an ex-

ecution of Pesto produces a direct serialization graph (DSG) whose vertices are com-

mitted transactions, denoted Tt, where t is the unique timestamp identifier. Edges in the

DSG are one of three types:

• Ti
ww
−−→ T j if Ti writes the version of object x that precedes T j in the version order.

• Ti
wr
−−→ T j if Ti writes the version of object x that T j reads.

• Ti
rw
−−→ T j if Ti reads the version of object x that precedes T j’s write.

We assume, as does Adya [4], that if an edge exists between Ti and T j, then Ti , T j.

An execution is serializable if the DSG is cycle-free. To prove Lemma 9 it suffices to

prove that if there exists an edge Ti
rw/wr/ww
−−−−−−−→ T j, then i < j (i.e., the timestamp of the

outbound vertex is smaller than the timestamp of the inbound vertex: tsout < tsin).

Based on this, we define a notion of conflicting transactions: informally, a transac-

tion Ti conflicts with T j if adding T j to a history containing Ti would cause the execution
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to violate Byz-serializability.

We show:

Lemma 9 On each correct replica, the set of transactions for which the CC-Check

returns Vote-Commit forms an acyclic serialization graph.

Next, we must show that Pesto’s commit protocol ensures that decisions for transac-

tions are unique.

Lemma 10 There cannot exist both an c-cert and a a-cert for a given transaction.

Likewise, the commit protocol must ensure that no two conflicting transactions may

both commit.

Lemma 11 If Ti has issued a c-cert and T j conflicts with Ti, then T j cannot issue a

c-cert.

It follows that Pesto satisfies Byz-serializability.

Theorem 7 Pesto maintains Byz-serializability

Since Pesto adopts the core Basil commit protocol, the proofs of Lemmas 10 and

11 follow directly from Basil; we refer to Section 3.5 for the full proofs. We prove that

Pesto’s concurrency control upholds Lemma 9.

Likewise, it follows directly from Basil that Pesto’s point read and commit proto-

col are Byzantine independent. We prove additionally that Pesto’s range read protocol

upholds Byzantine independence, and ensures progress in absence of contention.

Theorem 8 Pesto’s range read protocol is Byzantine independent.

Theorem 9 Pesto’s range read protocol guarantees successful termination after tCF .

167



4.6.3 Byz-Serializability

We first show that Pesto’s range read protocol guarantees validity and integrity for cor-

rect clients. This ensures that, given a serializable input state, any query issued by a

correct client yields a serializable result. Furthermore, the returned ReadSet, PredSet,

and DepSet accurately reflect the result and preserve serializability. We do not assess

the correctness of reads performed by Byzantine clients; under Byz-serializability, such

clients are responsible for their own consistency.

Lemma 12 Successful range reads issued by correct clients uphold data validity and

query integrity, and produce correct concurrency control meta-data.

Proof. Range read execution succeeds if a (correct) client receives 3 f +1 matching read

results, read sets (and valid dependency sets), and predicate sets. It follows that at least

one correct replica vouches for the result and asserts that it corresponds to the reported

read and predicate sets. A correct replica will only read valid row-versions, and will

perform the query computation truthfully (i.e., with integrity). Finally, if at least one

correct replica reports a row-version as only tentatively committed (prepared), a correct

client will register a dependency, or fail the range read. �

Notably, any details relating to snapshot synchronization do not impact data valid-

ity and query integrity. They affect only responsiveness, Byzantine independence, and

freshness.

For completeness, we show correctness also for point reads. We note that point

reads, by design, do not rely on server-side computation. A point read may perform

simple data transformations on a row-version; however, these may be performed client-

side—integrity is thus a given.
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Lemma 13 Successful point reads issued by correct clients uphold data validity and

produce correct concurrency control meta-data.

Proof. Point reads return either a committed or prepared row-version. Committed row-

versions are supported by a Commit-Proof which, by definition, proves the validity of

the write. Clients can execute their query on the associated row-value to confirm the

result. Prepared row-versions, in turn, are only selected by correct clients if backed by

f + 1 replicas, thus asserting that at least one correct replica has tentatively prepared the

value. Correct clients include the (unique) row-key and row-version in their read set, as

well as a dependency if the read row-version was prepared. �

Transaction Conflicts In the following, we refer to an execution of Pesto as the set of

committed transactions. An execution of Pesto is (Byz-) serializable if the execution

results of all (correct clients’) transactions are equivalent to some serial ordering of

all committed transactions. Pesto simplifies this objective by making the serialization

order explicit: transactions in Pesto are assigned a position in the serialization order via

their timestamp. A Pesto execution consequently upholds (Byz-) serializability if the

execution results of all committed transaction is consistent with the timestamp-induced

serialization order.

We say that a pair of transactions Ti, T j conflicts if tsi < ts j, yet T j’s execution

results are not compliant with the serial order. By design, Ti and T j may only conflict

if Ti produces a write that T j should observe, i.e., a write that changes the result of T j’s

read. This corresponds to a rw-edge in the DSG where T j
rw
−−→ Ti, thus violating our

objective that tsout < tsin for all edges in the DSG. All other cases (both transactions

read, both transactions write, or Ti reads) are conflict-free: writes are applied to a multi-

version store and indexed by their timestamp, and reads of Ti exclusively read versions
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≤ tsi. It thus follows immediately that all ww and wr edges in the DSG uphold tsout < tsin

(we refer to Section 3.5 for full proof).

Definition (Transaction Conflict) Ti and T j conflict if Ti produces a write xi to a row

x read by T j, but (i) T j does not observe xi, and (ii) there exists no other transaction Tk

with tsi < tsk < ts j that writes x.

We show that Pesto’s concurrency control (CC) ensures that the set of transactions

prepared by any given correct replica is conflict-free (or, in Adya’s formalism, the DSG

is cycle free). We re-state Lemma 9 adjusted for our conflict terminology.

Lemma 9. On each correct replica, the set of transactions for which the CC-Check

returns Vote-Commit is free of pair-wise conflicts.

For every query, the active read set (ARS), by definition, contains all row-keys for

which the query predicate evaluates to true; if there is no predicate, the ARS contains all

row-keys (for the given table).4 It follows from Lemmas 12 and 13 that correct clients

report in their transactions correct ARS and predicates.

Let Ti and T j be conflicting transactions such that Ti writes a row-key x, and T j reads

x. By the definition of a conflict, tsi < ts j and Ti is the last writer to x preceding T j in

the serialization order, and T j read a version of x with tsk < tsi.

By design, Ti’s write set must contain the write xi, as Pesto only writes keys in the

write set.

We distinguish two cases: (i) r is in the active read set (ARS) of T j, but is not fresh,

and (ii) r is in the passive read set (PRS) of T j, and thus T j’s ARS is incomplete.

4Note that point reads always contain a predicate strong enough to identify a singular row. Point reads
are thus active by design.
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We first show that the CC-check ensures that a replica R only votes to commit trans-

actions whose ARS is conflict-free, i.e., any concurrent write that would render a read

row-version stale leads to an abort.

Lemma 14 Pesto’s CC-check detects stale ARS.

Proof. There are two subcases: a replica R either executes the check for Ti before the

check for T j or vice versa. Note, that if Ti or T j pass the CC-check at R but do not

commit globally, then nothing need be shown as there is no conflict. We thus assume

that the first transaction to be checked becomes committed; it follows that no correct

replica that has prepared the transaction will ever change its local status to abort.

Ti before T j. If Ti has passed the CC-check on replica R (and Ti ultimately commits)

then Ti must either be in the Prepared or Committed set when R executes the check for

T j. When the check for T j reaches Line 9 in Algorithm 5 the abort condition is satisfied

for T j because r j(x) = tsk < tsi < ts j.

T j before Ti. If T j has passed the CC-check (and T j ultimately commits) then T j

must either be in the Prepared or Committed set when the check is executed for Ti.

When the check for Ti reaches Line 18 in Algorithm 5 the abort condition is satisfied

for Ti because r j(x) = tsk < tsi < ts j.

It follows that the CC-check cannot vote to commit two transactions with a pairwise

ARS conflict. �

Next, we show that the CC-check captures conflicts that render the ARS incomplete,

i.e., a row-key x that is in the PRS of T j but should have been active. We assume that

T j’s predicate set contains a predicate P that perceived x as passive. By definition of a

conflict, however, Ti’s write xi fulfills P.
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Lemma 15 Pesto’s CC-check detects incomplete ARS.

We show this first for the unoptimized version of Pesto that does not leverage write

monotonicity, before extending our proof to the general case. We note, that this unopti-

mized case is equivalent to a monotonicity grace period that is unbounded (or “infinite”).

Lemma 16 Pesto’s monotonicity-unoptimized CC-check detects incomplete ARS.

Proof. We again distinguish the two subcases: either the check for Ti was executed

before the check for T j or vice versa.

Ti before T j. If Ti has passed the CC-check, and was committed, then Ti must

either be in the Prepared or Committed set when the check is executed for T j. Since

monotonicity optimizations are disabled, it is guaranteed that the check for T j explicityly

compares with Ti when it reaches Line 12 in Algorithm 5. The check confirms (i) that

Ti’s write xi fulfills P, (ii) that x is not present in T j’s ARS, and (iii) that there is no

other transaction Tk with tsi < tsk < ts j that has prepared or committed a write xk that

does not fulfill P. This triggers the abort condition. Note that, if Tk exists but is only

prepared, Pesto dynamically adds a dependency on Tk: if Tk aborts, T j will abort too

(Alg. 5, Lines 15-16 and Lines 21-24).

T j before Ti. If T j has passed the CC-check, and was committed, then T j must either

be in the Prepared or Committed set when the check is executed for Ti. When the check

for Ti reaches Line 18 in Algorithm 5 it confirms that Ti’s write xi fulfills P, and x is not

present in the T j’s ARS, triggering an abort.5

It follows, that the CC-check cannot vote to commit two transactions with a pairwise

predicate conflict. �

5This check is more conservative than the Ti before T j variant. If desired, it can be adjusted accord-
ingly by comparing not only against concurrent reads, but dynamically checking whether there are other
writers Tk that might render the conflict unnecessary
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Next, we show that the CC-check remains safe when adjusted to use a finite mono-

tonicity grace period. We omit a distinction of grace period tiers as they do not affect

safety; they are equivalent to a single grace period and affect only efficiency.

Lemma 15 Pesto’s CC-check detects incomplete ARS.

Proof. We need only expand the subcase in which Ti was executed before the check for

T j. The reverse case is unaffected by write monotonicity and already proven complete

by Lemma 16.

Ti before T j. Let tsP be the table version of T j’s predicate P. We distinguish two

subcases: (i) tsi ≥ tsP − grace, and (ii) tsi < tsP − grace.

In case (i) no additional work need be shown, and we defer to Lemma 16. Ti will

actively be considered for conflict when the check reaches Line 12 in Algorithm 5.

Case (ii) requires additional care: the abort condition in Line 12 of Algorithm 5 will

not be triggered, yet we must ensure that Ti and T j do not both commit. We show via

contradiction that it is impossible for Ti to commit in case (ii).

Assume that Ti commits successfully. It follows from Pesto’s commit protocol that

at least 3 f + 1 (out of 5 f + 1) replicas voted to commit Ti and consequently prepared Ti.

We know, further, that tsP is the minimum table version observed across 3 f + 1 replicas,

and, that T j observed xi at none of said 3 f + 1 replicas (since xi is not in T j’s ARS).

It follows from quorum intersection that at least one correct replica Rc prepares both Ti

and computes T j’s ARS.

We distinguish two more subcases: (i) xi was applied by Rc already, yet T j did not

read xi, or (ii) xi was not yet applied by Rc at the time of T j’s read.
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Case 1 (writei before read j): Since tsi < ts j, and no other write xk with tsi <

tsk < ts j exists, xi must be the latest version of x visible when read j executes. If read j

omits inclusion of xi into it’s ARS, then either xi does not fulfill P— a contradiction—,

or xi was only prepared and read j read from a snapshot and skipped past xi. In the

latter case, however, Rc would have dynamically adjusted its reported table version to

be tsPc ≤ tsi + grace. Since tsP ≤ tsPc it must be that tsi ≥ tsP − grace (case (i)), a

contradiction.

Case 2 (read j before writei): Upon executing read j, Rc adjusts its local montonicity

threshold tsmono ≥ tsPc . There are once again two subcases. (i) tsPc ≤ tsmono ≤ tsi+grace.

Since tsP ≤ tsPc it must be that tsi ≥ tsP − grace (case (i)), a contradiction. (ii) tsmono ≥

tsPc > tsi +grace. It follows from Line 3 of Algorithm 5 that the CC-check of Ti triggers

the abort condition for violating write monotonicity. This is contradicts Rc voting to

commit Ti (and preparing it locally).

It follows that the CC-check cannot vote to commit for two transactions with a pair-

wise predicate conflict. �

We conclude from Lemmas 14 and 15 that Pesto’s CC-check returns a set of pairwise

non-conflicting transactions, and thus Pesto fulfills Lemma 9.

Note: One can strengthen Line 18 in Algorithm 5 to abort a transaction only if tsP −

grace < tsi < ts j. The proof of safety follows analogously from the above proof. The

monotonicity threshold and quorum interplay ensures that the above condition must hold

for conflicting transactions if Ti commits.

Pesto adopts the commit (and fallback) protocol logic from Basil. Given Lemma 9,

the proofs of Lemmas 10 and 11 consequently follow directly from Basil.
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Finally, we show that an execution of Pesto satisfies read validity, i.e., all reads from

correct clients’ committed transactions correspond to a committed write.

Lemma 17 For any given execution of Pesto: all values read by correct clients’ com-

mitted transactions were committed.

Proof. By design, Pesto only makes prepared and committed writes visible. We thus

must address only the case of reading prepared row-versions. It follows from Lem-

mas 12 and 13 that correct clients register a dependency for any prepared (row-key,

row-version) pair in their active read set (ARS). Additionally, during the CC-check, a

replica dynamically checks whether a passive row-version is prepared and whether an

abort could reveal an active version that would render the ARS incomplete. If so, it adds

a dependency for the prepared (passive) row-version.

It follows from Lines 21-24 of Algorithm 5 that a transaction only commits if all de-

pendencies commit.6 Consequently, all correct clients’ committed transactions observe

only committed writes. �

We conclude that Pesto upholds Byz-serializability:

Proof. Consider the set of transactions for which a c-cert could have been formed.

Consider a transaction T in this set. By Lemma 10, there cannot exist an a-cert for this

transaction. By Lemma 11, there cannot exist a conflicting transaction T ′ that generated

a c-cert. Consequently, there cannot exist a committed transaction T ′ in the execution

history. The history thus generates an acyclic serialization graph. Finally, by Lemma 17,

if T was issued by a correct client, then all reads of T were committed, and thus are

explainable by the serial execution. The system is thus Byz-serializable. �

6Algorithm 5, line 5 further ensures that (Byzantine) clients cannot claim fabricated dependencies that
may (intentionally) stall a transaction. This is not necessary for Byz-serializability, but ensures progress.
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4.6.4 Byzantine Independence

Next, we show that Pesto upholds Byzantine independence. Since Pesto adopts Basil’s

point read and commit protocol, it suffices to show that Pesto’s range read protocol does

violate Byzantine independence.

Lemma 18 Pesto’s range read protocol upholds Byzantine independence.

Proof. We distinguish the eager and snapshot execution paths.

Eager execution Byzantine independence follows directly from Lemma 12. All results

are supported by a correct replica. Byzantine participants cannot take influence on the

commit chance of a transaction. The result is, by definition, no more stale than a read to a

single correct replica, and read sets (Q-read), predicate sets (Q-pred), and dependencies

(Q-dep) are backed by at least one correct client. A predicate’s table version corresponds

to the minimum reported version: a Byzantine replica can report an artificially small

table version, but this affects only the efficiency of the CC-check, and not the outcome.

Snapshot execution The snapshot protocol introduces an additional layer of indirection.

The snapshot proposal generation process requires that at least one correct replica vouch

for every transaction in order to avoid proposing fabricated transactions. The proposal

process is thus equivalent to a procedure that, for each row-key, consults with a single

correct replica. Furthermore, proposing at transaction granularity ensures that every

snapshot applied respects transaction atomicity; and thus the reading transaction is not

subject to aborting due to reading from a non-serializable state.

Snapshot execution may require dynamic adjustment of table versions. Since adjust-

ment at most makes the table version smaller this once again affects only efficiency and

not the outcome of the CC-check.
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Finally, snapshot-based execution—like eager execution—requires 3 f + 1 matching

results, including consistent read and predicate sets as well as valid dependency sets. As

a result, Byzantine indepdendence is preserved even for empty snapshots. �

Lemma 19 Pesto upholds Byzantine independence in absence of a network adversary.

Proof. Pesto adopts Basil’s point read and commit protocol, and thus inherits its Byzan-

tine independence in absence of a network adversary. It follows from Lemma 18 that

Pesto’s range read protocol upholds this property. �

4.6.5 Discussing Range Read Progress

Range reads in Pesto do not guarantee deterministic success. Range reads may fail (and

need to retry) due to concurrent application of fresher commits at some replicas, or due

to patchy snapshots (discussed next), causing replicas to read inconsistent versions.

Handling patchy snapshots

SS-votes by default include only ids for the freshest row versions. This restriction,

in combination with Pesto’s snapshot filtering procedure, can have unintended conse-

quences: if correct replicas are inconsistent, then filtering may eliminate all (transac-

tion) candidates for a row, making it appear as if the row does not exist. In Figure 4.4,

for instance, all replicas have observed a different subset of transactions (for a given

key x): if replicas vote only with their latest version, then the resulting snapshot pro-

posal is empty. To account for this, Pesto’s execution procedure allows replicas to use

their latest committed row as stand-in for any “missing” row.
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Figure 4.4: Snapshots including up to k = 1 (black) and k = 2 (red) versions per key

Additionally, replicas may opt to include the k ≥ 1 latest versions of a given row

(with k depending on the frequency a given row is written to), allowing the client to es-

tablish some recent common version. Figure 4.4 illustrates an example snapshot process

for k = 2.

We note, that although snapshots can be patchy for small k (or extreme contention),

this is not due to Byzantine influence. A snapshot quorum consisting entirely of correct

replicas may produce insufficiently matching votes to successfully filter a transaction.

Pesto requires at least 2 f + 1 snapshot votes to form a proposal, thus guaranteeing that

even if Byzantine replicas (up to f ) opt to fabricate their votes, the resulting snapshot

proposal is no worse than a proposal sourced entirely from a subset of ( f + 1) correct

replicas.

All roads lead to... Contention

Pesto allows replicas to favor reading newer committed versions over versions included

in snapshots (or as stand-in for patchy snapshots). This may result in inconsistent ex-

ecution results as some replicas might execute on the proposed snapshot, while others

may execute on newer, locally processed committed versions. Although Pesto could

strengthen the snapshot execution requirement to force consistency—and thereby en-
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sure success of range reads—, this would be short-sighted as it fails to account for the

holistic progress of a transaction. A transaction which succeeds in its read but accesses

a stale version in the process may eventually have to abort, resulting in greater over-

all wasted effort. This approach effectively sacrifices the liveness of the overarching

transaction to ensure the success of individual range reads.

Patchy snapshots are, likewise, an indicator for high contention. Candidate row-

keys, for instance, might be dropped from a snapshot proposal because correct replicas

differ in their latest observed versions and report only a small number (e.g., k = 1) of

versions per key. Raising k can help agree on a common version if there is inconsis-

tency on the prepared versions, but, as discussed above, it is ultimately futile if replicas

disagree on the latest committed versions.

To ensure the best possible end-to-end progress Pesto should strive to offer opti-

mal freshness (to minimize missed writes, i.e., conflicts) and to read in as few steps as

possible (to minimize the conflict window opportunity [28]).

Pesto’s snapshot freshness guarantee is configurable via the number of collected

SS-votes. Requesting a quorum of 2 f + 1 SS-votes ensures that, for each (active) row-

key, Pesto proposes a version no older than what would be obtained by querying a single

correct replica (assuming unbounded k).

Clients can further enhance freshness by collecting 4 f + 1 SS-votes: This guaran-

tees that the SS-prop includes the latest committed version known to any replica. This

follows from the fact that every committed transaction must be prepared on at least

2 f + 1 correct replicas, of which at least f + 1 are guaranteed to be part of any quorum

of size 4 f + 1. Since Pesto, when enhanced with write monotonicity, requires at least

3 f + 1 matching replies—and thus typically waits for up to 4 f + 1 replies during eager
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execution—this configuration can be adopted with little to no added cost.

By default, our prototype constructs an SS-prop from 3 f +1 SS-votes, increasing the

coverage of correct replicas while still allowing early progress when it appears unlikely

that 3 f + 1 matching results will arrive. For improved freshness, this threshold can be

raised to 4 f + 1, incurring only a small increase in client-side processing latency: the

client already receives 4 f + 1 replies and must merely wait for and process them.

Finally, Pesto consciously favors freshness over consistency by opting to read fresher

committed versions, in case the snapshot is stale. This ensures that, for any successful

execution, the (active) read set is no more stale than a read to the committed state of a

single correct replica.

Importantly, Pesto’s range reads are always guaranteed to be responsive. Since snap-

shots cannot include fabricated transactions, synchronization, and consequently execu-

tion is guaranteed to be live. This ensures that a client reliably receives results. Failure

to obtain matching results provides the client a signal about the level of contention. A

client may choose to retry execution (possibly with larger k, and/or with larger snap-

shot quorums or read quorums), or (after a configurable amount of failures) choose to

abort its ongoing transaction and retry with a new timestamp (possibly after backing off

briefly). This contrasts with SMR-based designs, which always maintain the illusion of

consistency and freshness—even when a transaction is ultimately doomed to abort.

Termination in absence of Contention

We briefly show that, in the absence of contention, Pesto’s range read protocol ensures

reliable termination. Informally, we say that a transaction contends with a read if it

concurrently writes a value relevant to the read’s query predicate. For simplicity, we
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assume the existence of a point in time, tCF , after which the execution is contention-free.

In practice, intermittent periods of low contention are sufficient in order to complete a

range read.

Theorem 9 Pesto’s range read protocol guarantees successful termination after tCF .

Proof. Suppose all correct replicas exhibit the highest possible degree of inconsistency;

i.e., they differ on their latest (prepared) version for every row. By design, however, any

committed transaction must have been prepared on at least 2 f + 1 correct replicas.

We assume that k is unbounded and that the client obtains 4 f + 1 SS-vote’s. If this

is not the case, a client may opt to retry with a more conservative configuration.

Since there are no concurrent contending writes, the resulting snapshot proposal is

guaranteed to include the freshest committed row-version for every (active) row-key.

All transactions in the snapshot proposal are available on at least one correct replica,

allowing all replicas succeed in synchronizing all transactions in the proposal. Because

no new contending transactions arrive, the snapshot captures a fully committed frontier

and is complete (i.e., not patchy), ensuring that all replicas read from the same state.

As a result, all correct replicas produce consistent results, read sets, and predicate sets,

ensuring successful termination. �

We note that, in most cases, replicas are sufficiently consistent to achieve success

using a small k and smaller snapshot quorums. Replica consistency can be accelerated

by employing lightweight gossip schemes that forward prepared and committed trans-

actions.

Finally, we note that, in the absence of Byzantine clients (and contention), synchro-

nization is not necessary as all correct replicas will eventually converge. In this case,
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simply retrying will eventually yield termination; snapshot synchronization merely ac-

celerates the process. In the presence of Byzantine clients that intentionally (or just

by crashing) disseminate their transactions to only a subset of replicas, however, even-

tual consistency is not guaranteed. The snapshot protocol consequently serves also as a

means to ensure reliable termination of incomplete transactions.

Termination does not imply Commit

Successful range read execution does not imply that the overarching transaction will

commit. A conflicting write may arrive after the read completes, but before the associ-

ated transaction tries to commit—resulting in an abort. This is inevitable in presence of

contention. We thus once again limit our discussion to the period after tCF—the point

after which no more contending transactions arrive.

Pesto’s range read protocol (with sufficiently large quorums and k) ensures that a

range read will read the freshest committed version for any given row. It is possible,

however, that execution will miss fresher prepared versions. Consider, for instance, a

prepared version (perhaps issued by a Byzantine client) that is only replicated to at most

2 f correct replicas. Even a snapshot quorum of size 4 f + 1 might not include the ver-

sion’s transaction id f + 1 times, resulting in exclusion from the proposal. This may

cause the read of a stale (active) version, ultimately resulting in the reading transac-

tion’s abort.7 Successfully committing transactions thus requires synchronizing also the

(freshest) prepared versions. Pesto relies on two practical mechanisms to do so.

First, transactions that abort due to conflicts with prepared transactions trigger the

fallback protocol. The client of aborting transaction T will try to commit the conflicting

7Note that if the prepared transaction is only prepared at a few replicas then it might be possible for the
reading transaction to succeed in assembling a Commit Quorum; in this case it is the prepared transaction
that will ultimately abort, and not the reader! No additional coordination is necessary.
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transaction T ′ itself. This ensures that (i) all replicas receive the transaction (and thus

become consistent), and (ii) T ′ actually terminates, and thus any acquired dependency

is reliably resolved.

Second, Pesto replicas may gossip prepared transactions. This can be done either

eagerly, upon first receiving a transaction; or lazily, upon observing inconsistency for

range reads (a replica may then opt to gossip the transactions for the row-versions it

considers active).

4.7 Evaluation

Our evaluation seeks to answer the following questions:

• How does Pesto perform on realistic applications? (§ 4.7.1)

• How does Pesto compare to Basil’s KVS design? (§ 4.7.2)

• What is the impact of inconsistency on Pesto? (§ 4.7.3)

• How well does Pesto tolerate replica failures? (§ 4.7.4)

Implementation We implement a prototype of Pesto in C/C++, starting from the open

source implementation of Basil [170]. We use Protobuf [75] and TCP for networking,

ed25519 elliptic-curve digital signatures [19, 134] and HMAC-SHA256 [43] for authen-

tication, and Blake3 [177] for hashing. For its query layer, Pesto adapts Peloton [77], a

full fledged open-source SQL Database based on PostgreSQL [78]. We modify Peloton

to use Pesto’s Concurrency Control and support snapshot synchronization; we remove

Peloton’s self-driving configuration features, and make several optimizations to its index

selection and execution procedures.
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Baselines We compare against four baseline designs:

1. Unreplicated Peloton, run in-memory on a dedicated server. We adopt our non-

Pesto specific optimizations for a fair comparison.

2. Peloton-SMR, a strawman system that layers Peloton atop BFT state machine

replication (SMR). We layer Peloton atop HotStuff (Peloton-HS) [192]—a pop-

ular BFT consensus protocol that forms the basis of several commercial systems

[10, 13, 31, 60, 179, 181]—, and BFT-SMaRt (Peloton-Smart) [23, 176], a state-

of-the-art PBFT-based [30] implementation.

For correctness, SMR-based designs require deterministic execution on each

replica: this requires either sequential execution (which drastically limits per-

formance) or implementation of complex and custom parallel execution en-

gines [49, 57, 68].For maximum generosity to the baselines, we opt to relax the

determinism requirement for Peloton-SMR: we allow replicas to freely execute

transactions in parallel, and designate a “primary” replica to respond to clients

to ensure serializability. This system configuration is explicitly not fault tolerant,

but simulates the optimal upper-bound on performance. Finally, we augment both

Peloton-SMR prototypes to benefit from Basil’s reply batching scheme [171] to

amortize signature generation overheads.

3. Third, we compare against PostgreSQL [78] (commonly referred to as Postgres),

a production-grade SQL database. We run Postgres both unreplicated, and with

its native primary backup feature (Postgres-PB) where writes are synchronously

replicated (and written to a WAL), mounted in memory using tempfs.

4. Finally, since Peloton and Postgres are not easily shardable, we also compare

Pesto against CockroachDB (CRDB) [37, 175], a popular distributed database of

production grade. Because CRDB has poor single node performance (it’s CPU
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utilization and query processing latency are much higher than Peloton/Postgres)

we instantiate it with 6 shards (one machine per shard). We run CRDB unrepli-

cated, in-memory.

Table 4.1 summarizes all evaluated systems.8

Baseline Description
Pesto Our system. A BFT database that is SQL compatible and

shardable.
Pesto-unrep A toy variant of Pesto that is unreplicated. Only used for

microbenchmarking purposes.
Peloton An unreplicated (non-fault tolerant) SQL database. Pelo-

ton [77] forms the basis for Pesto’s database engine.
Peloton-HS A BFT database built by layering Peloton atop

HotStuff [192], a BFT consensus protocol.
Peloton-Smart A BFT database built by layering Peloton atop

BFT-SMaRt [176], a BFT consensus protocol.
Postgres A popular unreplicated SQL database of production

grade [78].
Postgres-PB A deployment of Postgres using its native primary backup

replication (one backup replica).
CRDB A popular distributed SQL database of production

grade [37]. We instantiate CRDB with 6 shards.

Table 4.1: Summary of evaluated systems.

Experimental Setup We use m510 machines (8-core 2.0 GHz CPU, 64 GB RAM,

10 GB NIC, 0.15 ms ping latency) on CloudLab [36]. Clients execute transactions in

a closed-loop, and reissue aborted transactions using a standard random-exponential

back-off scheme. We measure transaction latency as the time difference between initial

invocation and commit. We configure each replicated system to tolerate f = 1 faults

(n = 3 f + 1 for Peloton-SMR, n = 5 f + 1 for Pesto, n = 2 for Postgres-PB); Peloton,

Postgres and CRDB are run unreplicated and tolerate no faults. We run experiments for

60 seconds, including a 15 s warm-up and cool-down period.

8Our system prototypes are available at https://github.com/fsuri/Pequin-Artifact.
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4.7.1 High level performance

We evaluate Pesto on three popular transactional benchmark applications: TPC-C [182],

AuctionMark [50], and SEATS [50]. TPC-C simulates the business of an online e-

commerce application. We configure it to use 20 warehouses, and instantiate indexes to

retrieve orders by customer, as well as customers by their last name. TPC-C exhibits

high contention (e.g., all new-order transactions on same warehouse conflict), and a

high ratio of point to range reads. AuctionMark models an online auction platform,

while SEATS simulates an airline reservation system. Both workloads are characterized

by a high fraction of range queries and cross-table joins, but they exhibit overall low

contention relative to TPC-C. We model our implementation after Benchbase [50, 76];

we instantiate both workloads with a scale factor of 1.

Figures 4.5, 4.6 and 4.7 present the results for TPC-C, AuctionMark, and SEATS,

respectively.

TPC-C Pesto’s throughput (1784 tx/s) matches that of unreplicated Peloton (1777 tx/s)

and Postgres (1781 tx/s), is 2.3x higher than that of Peloton-HS (758 tx/s) and Peloton-

Smart (785 tx/s), and 1.4x higher than Postgres-PB (1257 tx/s). Pesto increases la-

tency by less than 1.5x over Peloton and Postgres (equal latency at high load), and

reduces latency by 3.9x over Peloton-HS, and 2.7x over Peloton-Smart. Peloton-HS and

Peloton-Smart incur the latency of consensus (3 message delays (md) BFT-SMaRt, 7

md HotStuff) for each read, write and commit request; Postgres-PB incurs replication

latency for each write, but performs reads at the primary only. Pesto, in contrast, (i)

buffers writes, (ii) executes point reads in a single round trip as well as 99.9% of range

reads, and (iii) can commit in a single round trip (Fast Path) 97% of the time. While

Pesto, Peloton and Postgres remain CPU bottlenecked, both Peloton-SMR systems and

Postgres-PB are contention bottlenecked due to their higher latency, thus limiting their
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Figure 4.5: TPC-C (20wh) Throughput vs. Latency

achievable throughput. CRDB, too, is contention bottlenecked, peaking at 1033 tx/s;

although CRDB does not replicate, it supports only sequential reads within each trans-

action which results in high latency on TPC-C.

Perhaps surprisingly, Pesto matches the throughput of unreplicated Peloton despite

the overheads inherent to BFT protocols (e.g., signatures and quorum requirements).

This is because Pesto must read only from a quorum of replicas (at least f + 1 for point

reads, and at least 3 f + 1 for range reads): on a point read heavy workload as TPC-C

this allows Pesto to efficiently load-balance read requests and exceed its unreplicated

performance. Unreplicated Pesto is able to closely match Peloton in latency, but reaches

a CPU bottleneck at 1379 tx/s.

AuctionMark and SEATS make fewer point reads which diminishes the benefits of

request load balancing (range reads require larger quorums). Nonetheless, Pesto is able
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Figure 4.6: AuctionMark Throughput vs. Latency
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Figure 4.7: SEATS Throughput vs. Latency
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to match its unreplicated throughput, while coming within 1.36x of unreplicated Peloton

on AuctionMark, and 1.22x on SEATS; Pesto comes within 1.94x of Postgres on both

workkloads. Pesto reduces latency over Peloton-HS and Peloton-Smart respectively by

5x/3x on AuctionMark, and 4.6x/3.4x on SEATS. Throughput gains are limited (1.1x

AuctionMark, 1.2x SEATS) as all systems are CPU bottlenecked.

Takeaway Pesto achieves performance comparable with unreplicated production-grade

systems, while significantly outperforming traditional BFT-based approaches.

4.7.2 Comparison with Basil’s key-value store design

Next, we examine the overheads and benefits introduced by Pesto, compared to Basil’s

key-value store-based approach.
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Figure 4.8: Scalability with increasing number of shard on TPC-C (20wh)

Scalability Figure 4.8 shows the scalability of Pesto on TPC-C with increasing number

of shards. Pesto is CPU bottlenecked and thus scales significantly by partitioning the

workload across two (1.64x) and three shards (2.21x), respectively. On a shared three-
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shard setup, Pesto—which implements a full-stack SQL system, requiring significant

CPU cycles for query parsing, planning, execution, and index management—comes

within 1.23x of the reported throughput of Basil (4862 tx/s), which implements only a

simple key-value store. We also compare Pesto’s scalability to CRDB. Because Pesto

uses more machines (for replication), we allow CRDB to scale to 6 and 9 shards (its

peak). CRDB’s has poor single-shard performance (4.46x less throughput than Pesto),

but scales at a rate similar to Pesto. Its peak performance is 2.91x below Pesto.

Range vs. Point Reads While Pesto generally incurs overhead relative to Basil, this is

not the case for all transactions. Pesto’s range read protocol reduces the latency of TPC-

C’s scan-heavy Stock-level transaction by over 11x compared to Basil’s point-read

based implementation.
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Figure 4.9: Latency comparison for the same query implemented using point reads versus range
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We illustrate the benefits of Pesto’s range read protocol in Figure 4.9, which reports

scan latency across varying ranges on a simple read-only microbenchmark. As more

rows are accessed, the latency of a point-only implementation increases significantly

due to the need to process and verify messages based on the size of the intermediary
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result. In contrast, range reads scale significantly better (a 16.6x reduction for a range of

10k rows), with only a single message exchange required for the entire query. The cost

of range reads scales with the result size. For example, if a scan’s result is conditioned

on a predicate that holds for only 1 in 100 rows, range reads scale accordingly (a 110x

reduction for a range of 10k rows).

4.7.3 Stress testing Range Reads

Range reads offer improved expressivity and performance but might not succeed in a sin-

gle round trip. To evaluate the worst-case, we stress test Pesto by (i) artificially failing

eager execution for every transaction (requiring a snapshot proposal, but no synchro-

nization), and (ii) artificially simulating inconsistency by ommitting/delaying writes of

every transaction at 1
3 rd of replicas (requiring also synchronization).

We implement a microbenchmark based on YCSB [39] consisting of 10 tables, each

containing 1M keys. Every transaction reads and updates 10 rows. We distinguish two

workload instantiations: an uncontended uniform access pattern U, and a very highly

contended Zipfian access pattern Z with coefficient 1.1. Figure 4.10 shows the results.

On the uniform workload Pesto is CPU bottlenecked. Failed eager execution (U-

FailEager) incurs an extra round trip to propose a snapshot and re-execute on the syn-

chronized state. Since each transaction executes twice, CPU load increases, reducing

throughput (≈9%) and increasing latency (1.38x). Inconsistency (U-Incon) yields sim-

ilar results: two thirds of transactions fail eager execution and require both a snapshot

proposal and synchronization between replicas to exchange missing writes. However,

this cost is partially offset by the initial omission of writes at one third of replicas, re-

sulting in an overall throughput reduction of only ≈ 5%.
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Figure 4.10: Stress testing range reads under simulated inconsistency

The Zipfian workload, in contrast, induces a heavy contention bottleneck. The re-

spective up-ticks in read latency for Z-FailEager (1.43x) and Z-Incon (1.49x) increase

the opportunity for conflict (contention windows grow [28]), resulting in a rise of trans-

action aborts. Throughput drops by 32% and 48% respectively.

4.7.4 Impact of Failure

Finally, we evaluate the impact of replica failures in Pesto. Note that replicas cannot

impact the correctness or liveness of Pesto’s range read protocol. The snapshot filter-

ing procedure ensures that all proposed transactions are valid (and thus can be reliably

synchronized), and no more stale than a read to any single correct replica. Similarly,

replicas cannot affect the safety of Pesto’s commit protocol (this follows from Basil).

Replicas can only impact the system by crashing.

Figure 4.11 shows the effect of f = 1 failures on the Uniform and Zipfian mi-
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crobenchmarks. Crucially, and unlike SMR-based designs that rely on a leader [30, 73,

101, 192], Pesto suffers no progress interruptions as transaction coordination is entirely

client driven. Replica failures affect only Pesto’s ability to commit in a single round trip

(fast path).
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Figure 4.11: Performance impact of a replica failure

We evaluate two configurations: (i) Failure-NoFP illustrates the effect of a failure

when the fast path is disabled. (ii) Failure-FP shows the impact of a failed fast path when

using a very conservative timeout of ≈ 4 ms. In principle, fast and slow path execution

can run in parallel to avoid timeout-induced delays. However, this introduces redundant

processing when transactions succeed on the fast path. By default, Pesto delays the slow

path until a timeout to optimize resource efficiency.

In both configurations, commits require an additional round trip of coordination (to

a single shard, § 4.5.2) to ensure durability. This increases latency, and, for the CPU

bottlenecked uniform workload, reduces throughput due to added signature overhead.

U-Failure-NoFP and U-Failure-FP degrade throughput by 14% and 24%, respectively,
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while latency increases by 1.59x and 2.7x.

In contrast, on the contention bottlenecked Zipfian workload the slow path over-

head only marginally impacts throughput and latency (1.25x latency increase, and a 5%

throughput reduction for Z-FailureNoFP). This is a direct consequence of Pesto making

writes visible eagerly upon preparing and allowing contending transactions to acquire

dependencies instead of waiting for commitment. The additional slow path latency is

incurred only after preparing, and thus leaves conflict windows mostly unaffected. Z-

FailureFP incurs the additional timeout latency (2.5x), and reduces throughput by 36%.

We defer a detailed analysis of client failures to our evaluation of Basil (§ 3.6).

Client failures affect only commit liveness—not the commit outcome—and are resolved

via Basil’s cooperative fallback protocol, which Pesto adopts. Client failures before

commit affect only itself, as its writes are not yet visible; clients can only impact the

execution of their own queries, and thus cannot affect the correctness or progress of

correct clients’ executions.

4.8 Extended Technical Discussion

This section outlines supplementary technical details, optimizations, and considerations

for Pesto beyond those discussed in the main technical sections.

4.8.1 Impact of Byzantine Timestamps

Each transaction in Pesto is assigned a unique timestamp tsT that implicitly establishes

the final serialization order of transactions. This timestamp is generated client-side as
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ts B (localtime,ClientID, seq-no). Byzantine clients may freely select arbitrary times-

tamps; here, we discuss briefly the implications of such behavior.

Choosing a timestamp that is artificially small has minimal impact. Reads will sim-

ply access an older snapshot version—or be rejected if such versions have been garbage

collected (see § 4.8.2). Writes with low timestamps tend to abort during validation

because they would invalidate existing prepared or committed reads with larger times-

tamps.

Conversely, choosing artificially large timestamps is more problematic. While

writes with future timestamps cause no immediate issues—they are simply stored "in

the future"—reads can create extended conflict windows. Specifically, any concurrent

writes with timestamps between the version read by the reader and the reader’s own

timestamp must abort, as they would otherwise invalidate the reader’s snapshot.

To mitigate abuse by Byzantine clients fabricating excessively large timestamps,

replicas reject transactions whose timestamps exceed their local clock RTime by a thresh-

old δ, which accounts for client ping latency and clock skew. For a Byzantine client to in-

duce conflicts, it must successfully prepare or commit its transaction; aborted or rejected

transactions remain invisible and thus do not affect correct concurrent clients. Therefore,

to maximize the probability of committing, it is rational—even for Byzantine clients—

to choose timestamps that accurately reflect real time. While Pesto does not rely on δ

for safety or liveness, a well-chosen value can improve the system’s throughput.
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4.8.2 Multi-version Garbage Collection

Writes in Pesto create new row versions indexed by the writing transaction’s timestamp.

To enable garbage collection of old versions, Pesto—like Basil—enforces a timestamp

bound on readable and writeable versions. Each replica maintains a low-watermark gc,

which lags behind its local clock and marks the cutoff point. New reads or writes with

timestamps below gc are ignored. When writing a new row version with TS > gc,

the replica dynamically deletes all but the latest version with timestamp smaller than

gc. This ensures that valid readers with read timestamps TS ≥ gc can find a readable

version. To clean up rarely-updated rows, replicas may also perform periodic sweep

rows to garbage collect old versions.

This scheme bounds the age of stored writes, but not their frequency. A highly con-

tended key, for instance, may receive many writes in quick succession; all with times-

tamps above gc, preventing their immediate garbage collection. To prevent storage bloat

(e.g., to avoid abuse by an authenticated Byzantine client) Pesto can employ two addi-

tional mechanisms. (i) First, Pesto may rate-limit clients to only one active transaction

at a time. This limits write frequency, and additionally ensures that Byzantine clients

must complete prior transactions before issuing new ones, minimizing transaction stalls

in the system. (ii) Pesto may enforce a per-key version limit l (this may be configured

differently for different objects). A correct replica can delete all but the freshest l ver-

sions (with timestamps greater than gc), and reject any reads to the key with timestamps

older than the lth version. If a concurrent read transaction depends on a (prepared) ver-

sion has beem garbage collected (i.e., older than lth version), that transaction is aborted.

This is safe and sensible, as the transaction would likely abort anyway due to reading

stale data.

If a snapshot-based read—i.e., a range read applying an SS-prop—requests a version
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that has already been garbage collected, the replica returns the freshest available version

instead. While this may reduce the number of matching read replies, it does not com-

promise safety and often aids transaction progress, since garbage-collected versions are

(i) typcally stale and (ii) would otherwise cause dependent transactions to abort.

4.8.3 Active Snapshots

Pesto optimistically records in its read sets and snapshot votes only the metadata of

those rows that are relevant to the query computation. Specifically, an active snapshot

includes the transaction id’s associated with row versions that satisfy a query’s filter

predicates—i.e., the active rows.

Record relevant passive versions Including only the ids of active rows—that is, rows

whose freshest version satisfies the query predicate—greatly reduces snapshot size but

can cause snapshots to be unnecessarily stale. For example, if some replicas do not

include a row-key because their latest version v does not fulfill the predicate (e.g., k = 1),

while others include an earlier version v′ < v that does, Pesto may reconstruct a stale

state (v′). This can cause the reading transaction to abort at commit time due to missing

a newer version. To prevent this, replicas should also include in snapshots those fresher

versions for which a past version satisfies the predicate. We call these included (passive)

versions active-negative.

Nested Queries Active snapshots may require additional care when handling complex

or nested queries. Consider the nested query SELECT * FROM tx WHERE x > (SELECT

MAX(y) FROM ty): the active rows of the outer query Qo depend on the result of the inner

query Qi. Since replicas’ SS-votes may differ, the resulting (potentially patchy) SS-prop

may not be commutative with a sequential snapshot execution of Qi followed by Qo. In
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such cases, it may be advisable to either (i) use coarser snapshots, or (ii) rewrite nested

queries into sequential patterns. In practice, however, replicas tend to remain highly

consistent and execution typically succeeds even on the eager path (§ 4.7).

A note on freshness Active snapshots may, in rare edge cases, lead to slight freshness

degradation. If some (but not all) correct replicas observe only passive row-versions

among their latest k versions and therefore omit the row-key from their SS-vote, the re-

sulting snapshot may reflect a version that is more stale than what a single replica could

return. Notably, if the row-key is omitted entirely, this is equivalent to materializing a

passive row-version, which is the desired outcome.

Consider the following example with a snapshot quorum of 2 f + 1 = 3 SS-votes

(assuming f = 1) for a key x with two versions: x1, which satisfies the query predicate

P, and x2, which does not. Replica R1 has committed x2 and sees no active version, so it

casts SS-vote1 B {}. Replica R2 has committed x1 and prepared x2. It casts SS-vote B

{x1, x2}, including x2 as an active-negative version. Replica R3 is Byzantine and votes

at whim: it casts SS-vote B {x1}. The resulting snapshot proposal is SS-prop B {x1},

even though both correct replicas have observed the fresher x2. Because R1 omitted x2,

the snapshot reflects an unnecessarily stale state. In effect, freshness degrades from the

equivalent of reading the freshest version from a single correct replica, to selecting the

k-freshest version from a single replica. If instead SS-vote3 B {}, then the resulting SS-

prop is empty—effectively the same as reading x2, which is passive and does not affect

P. This is a valid and even desirable outcome.

Importantly, this edge case does not compromise Byzantine independence. While

the Byzantine replica may influence which version is selected, it cannot dictate the out-

come. The scenario is no worse than if the faulty replica had abstained from voting

entirely, and a different correct replica had reported only x1 as its latest active version.
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4.8.4 Snapshots with Optimistic Transaction IDs

Snapshots can be further compressed by optimistically replacing transaction identifiers

with transaction timestamps. Unlike transaction identifiers—which are statistically in-

dependent cryptographic hashes (256b)—timestamps are smaller (64b) and temporally

correlated, allowing more efficient encoding: a simple delta encoding can reduce them

to 32b, and integer compression can shrink them further to under 16b.

However, Byzantine clients may equivocate by assigning the same timestamps to

two distinct transactions. This can cause snapshots to diverge: upon receiving a snapshot

proposal containing timestamp tsT , two correct replicas may associate it with different

transactions T and T ′ (tsT = tsT ′), leading to inconsistent synchronization. Fortunately,

this is a low-yield and easily detectable attack. Since timestamps embed client identifiers

and all transactions are authenticated, any client that reuses a timestamp across different

transactions is explicitly identifiable. Replicas that detect such behavior can report and

exclude the faulty client from further participation. To improve robustness, a correct

client whose snapshot execution fails may retry using standard transaction identifiers,

which are globally unique and therefore immune to ambiguity.

4.8.5 Distributed Queries

Orchestrating and implementing cross-shard query execution—such as scans or joins

over partitioned tables—is well-studied [14, 99, 175, 193] but non-trivial, and beyond

the scope of our prototype. These challenges are not unique to Pesto, and arise similarly

in SMR-based systems.

We briefly outline how to coordinate Pesto’s snapshot protocol across shards. For
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simplicity, we assume each shard includes a replica operated by the same trust authority

(i.e., every replica has a trusted counterpart in other shards). We leave the exploration

of efficient, trust-free cross-shard execution to future work.

We distinguish between flat and nested queries. Simple flat queries, such as range

scans (e.g., SELECT * FROM tbl WHERE x > 5) or hash joins [133], require no cross-

shard coordination during snapshotting. Each shard can independently compute an SS-

prop by executing the query locally. Once all involved shards have synchronized, cross-

shard query execution proceeds. One shard may act as a coordinator to aggregate the

final results. If the client is unaware of the partitioning scheme, it suffices to contact the

coordinator, which forwards the request to the appropriate shards. Read sets, predicate

sets, and dependency metadata can be collected directly from each individual shard.

Nested queries, by contrast, may require cross-shard execution during snapshotting

due to dependencies between inner and outer sub-queries. As noted in Section 4.8.3,

such dependencies can complicate snapshotting even within a single shard. Sharding can

amplify this challenge, as intermediate sub-query results may determine which shards

to involve—potentially leading replicas operated by different trust authorities to involve

inconsistent shard sets. In such cases, it may be advisable to rewrite queries into se-

quential stages, or conservatively expand the snapshot scope to include all potentially

relevant shards.

These complexities are not specific to Pesto: in SMR-based systems as well, nested

cross-shard queries may require sequential coordination to determine the involved

shards, and each sub-query must be replicated consistently via consensus.
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4.9 Related Work

In addition to Basil (Chapter 3), the BFT key-value store Pesto builds upon, there are

several other related research efforts.

BFT State Machine Replication State machine replication (SMR) [160] provides the

abstraction of a single fault tolerant server, a core building block in many distributed

data-storage systems, both in the Crash Fault Tolerant (CFT) [14, 40] and BFT space [7,

8, 16, 98]. At the heart of BFT SMR lie consensus protocols [30, 35, 73, 80, 101, 165,

192] enable replicas to establish a consistent total order of requests, despite arbitrary

misbehavior. This powerful abstraction, unfortunately, does not come cheap.

Reaching agreement requires several rounds of message exchanges, resulting in

high latency. To facilitate agreement BFT consensus protocols traditionally designate

a leader replica to act as a designated sequencer [30, 80, 101, 192]; this marks a scal-

ability bottleneck and raises fairness (and censorship) concerns [197]. Recent works

propose multi-leader approaches [46, 73, 165, 166] that improve throughput and fair-

ness at the cost of increased latency. Pesto, following in Basil’s footsteps, sidesteps both

performance and fairness concerns by adopting a client-driven (leaderless) approach and

enforcing Byzantine independence.

To maintain consistency, replicas in SMR must further execute requests sequentially,

limiting scalability; though some works explore ways to regain limited parallelism [49,

57, 68]. Pesto, in contrast, is order-free by design, and naturally parallelizes concurrent

executions. Finally, SMR-based systems, by default, require that all replicas execute

every operation. Yin et al. [190] and Distler et al. [51] explore separating agreement

from execution to reduce redundancy; Pesto, likewise, need only execute at a subset of

replicas, enabling load balancing.
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Database functionality can be layered on top of SMR (or vice versa) [94, 159], but

at high cost.

Blockchains [60, 62, 64, 65] offer neither interactive transactions nor SQL, and instead

implement custom smart contract (SC) languages [198] (effectively stored procedures);

SC invocations are ordered using BFT SMR and executed by native engines such as the

Ethereum Virtual Machine [63] or Move runtime [61].

DB atop BFT BlockchainDB [55] layers a DB atop existing blockchains and shards

contents across peers to reduce replication redundancy; however, it does not imple-

ment transactions and offers only a GET/PUT interface. BigchainDB [127] imple-

ments a custom NoSQL [83] interface and layers MongoDB [88] on top of Tender-

mint [27]. FalconDB [151] leverages authenticated data structures to allow clients to

safely execute limited SQL queries against a single replica; it orders transaction com-

mits via Tendermint and uses OCC to enforce snapshot isolation. The Blockchain Rela-

tional Database [139] and Kwil [180] layer PostgreSQL [78] atop BFTSmart [176] and

CometBFT [178], respectively, but limit SQL transactions to stored procedures.

BFT atop DB Hyperledger Fabric [8] adopts an Execute-Order-Validate framework:

stored procedures (Chaincodes) are executed optimistically in parallel across replicas

(peers), and ordered for validation. ChainifyDB [161] implements a similar architecture

but supports a general purpose SQL interface and allows replicas to deploy heteroge-

neous relational DB’s. Transactions are executed optimistically, and attempt to reach

agreement on results; if executions are inconsistent, database states are rolled back, and

transactions re-executed.

SemanticCC Pesto’s SemanticCC builds on the principles of predicate and precision

locking [56, 92]. Hekaton [48], too, leverages semantics to avoid aborts, but does so
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by tracking the full read set and re-executing a transaction during validation to detect

missed versions. HyPer [140] adapts precision locking to optimistic concurrency control

(OCC), but only in the context of an unreplicated database. In contrast to HyPer, which

stores predicates server-side during execution, Pesto stores no query metadata during

execution and instead relies on clients and write monotonicity to enforce serializability.

4.10 Conclusion

This chapter introduced Pesto, a high performance BFT database that provides a general

SQL purpose interface. Pesto forgoes explicit ordering of requests, allowing execution

to proceed in parallel, and with low latency. It implements Byz-serializable transac-

tions and upholds Byzantine independence, thereby limiting the influence of Byzantine

participants.
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CHAPTER 5

CONCLUSION

This dissertation presents a novel approach to building high performance Byzantine

fault tolerant (BFT) data storage systems for decentralized applications. Drawing on the

principles of classical, crash fault tolerant (CFT) distributed databases, we challenge the

conventional reliance on implementing a shared, tamper-proof totally ordered log via

State Machine Replication (SMR). Instead, we advocate for enforcing only serializable

executions—that is, executions equivalent in effect to some total order—thus avoiding

the costly overhead of total ordering. This shift enables both improved performance and

enhanced robustness.

We realize this approach through the design of two systems: Basil [171] and

Pesto [172]. Basil serves as the foundation, integrating replication and distributed trans-

action coordination into a single, low-latency storage layer. Its order free, client-driven

architecture allows transactions to execute independently and in parallel, as long as they

do not conflict—achieving higher throughput, lower latency, and improved fault isola-

tion compared to traditional SMR-based designs. Building on Basil, Pesto adds support

for rich, SQL-style query interfaces, preserving performance while enabling seamless

integration with existing application stacks.

Together, Basil and Pesto demonstrate that it is possible to scale the abstraction of

a shared, totally ordered log by avoiding explicit ordering and coordinating only when

necessary—thus opening a new design space for more efficient and expressive BFT

transaction processing.
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5.1 Other Work

This section briefly highlights additional research projects to which I contributed to

substantially during my PhD, but which are not included in this dissertation.

5.1.1 Autobahn: Seamless high speed BFT

Autobahn [73] is a general purpose Byzantine Fault Tolerant (BFT) State Machine

Replication (SMR) architecture that delivers low latency, high throughput, and improved

resilience to intermittent progress interruptions.

The Quest for Seamlessness Most practical BFT SMR protocols today are designed

for partial synchrony: they guarantee safety at all times but ensure liveness only dur-

ing periods of sufficient synchrony. In practice, this is typically approximated using

timeouts—when a timeout elapses, the protocol suspects a failure and triggers a new

leader election to restore progress.

Unfortunately, many existing protocols degrade significantly when these timeouts

occur. This is problematic because timeouts are notoriously hard to configure: too

short, and they trigger false suspicions under benign delays; too long, and they delay

recovery from genuine faults. As a result, timeout violations are common in real-world

deployments, often caused by network delays, congestion, or simple replica failures.

Contrary to the implicit assumption that such blips are rare, we argue they are intrinsic

to the nature of partial synchrony. As such, protocols must perform well not only when

synchorny holds, but also in the aftermath of its violation.

However, today’s BFT protocols often fail to meet this standard. For instance, Hot-
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Stuff [192] exhibits a pronounced performance degradation—or hangover—that persists

even after a blip resolves. The root cause is that protocols like HotStuff and PBFT [30]

tightly couple data dissemination with agreement: all operations must be both sequenced

and broadcast through the designated leader. During a leader failure or asynchronous

interval, this leads to backlogs. After recovery, these backlogs must be cleared, but

progress is limited by the available excess throughput capacity, resulting in a sluggish

recovery.

To support seamless recovery, Autobahn decouples data dissemination and agree-

ment into two distinct layers. The first is a data layer that continues disseminating

transactions at the pace of the network, even during periods of asynchrony. The second

is a consensus layer that consumes the outputs of the data layer to achieve total order.

To enable seamless operation, the data layer must disseminate transactions in a man-

ner that is: (i) reliable, ensuring that only data that actually exists is considered during

agreement; (ii) responsive, progressing at the speed of the network; and (iii) indexable,

to support fast and efficient recovery.

Vote

PoA = f+1 Votes

Certification of 

Available Requests

Vote

Vote

Propose

Figure 5.1: A car represents the process of certifying the availability of a request.

Cars and Lanes The key unit in Autobahn is the car (Fig. 5.1)—a conceptual structure

that represents reliable data dissemination. To disseminate a transaction (or a batch of

transactions), a replica must obtain a Proof of Availability (PoA): a quorum of acknowl-
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edgements confirming that at least one correct replica has durably stored the data.

Every replica in Autobahn continuously batches and disseminates transactions by

constructing its own cars, independently of others. We say that each replica operates in

its own lane, producing cars at its own rate (Fig. 5.2). This design maximizes through-

put and allows Autobahn to reliably disseminate transactions—even in the presence of

Byzantine failures or consensus interruptions. Within each lane, cars are chained to-

gether via hash references, forming an implicit order. Each car transitively proves the

availability of all of its predecessors, enabling efficient indexing.

Tip Cut: <2, 2, 2, 3>

Figure 5.2: Autobahn chains cars into lanes, with each replica operating its own lane indepen-
dently. To establish a total order, it suffices to reach agreement a cut—a set of lane tips—which
implicitly captures a consistent snapshot of the entire system state.

Reaching Agreement While lanes ensure that transactions are reliably disseminated,

they only provide weak consistency. For instance, different replicas may observe incon-

sistent views of the same lane, where neither may be a prefix of the other. The role of

the consensus layer is to reconcile these views and impose a total order on the certified

transactions.

Autobahn’s lane structure helps streamline the process. In particular, it suffices to

reach agreement on a cut—the latest car (or tip) in each lane (Fig. 5.2). Since each tip

subsumes all prior cars in its lane, reaching agreement on a cut suffices to agree on and
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ordering for all underlying data.

Autobahn’s architecture supports a flexible consensus backend. Systems can instan-

tiate Autobahn with a consensus protocol of their choice, and “motorize” it to achieve

high throughput and seamlessness. By default, Autobahn uses a latency-optimized vari-

ant of PBFT [30], as illustrated in Figure 5.3.

Prepare

P-QC  = 2+1 
Prepare Votes

.

.

.

C-QC  = 2+1 
Confirm Ack

Confirm Commit

Slow-Path:

Fast-Path: C-QC  = 3+1 Prepare Votes

Figure 5.3: Autobahn’s consensus layer follows a classic PBFT-based approach. To reach agree-
ment, a leader replica collects a quorum of votes over two rounds. In fault-free settings, Auto-
bahn can reach agreement within a single round (fast path).

Evaluation Autobahn offers best-in-class performance. In matches the throughput of

modern DAG-based BFT protocols such as Bullshark [165], while cutting latency by

more than half. At the same time, it matches HotStuff’s latency without suffing from its

recovery hangovers.

5.1.2 BeeGees: Stayin’ Alive in Chained BFT

BeeGees [74] is a BFT SMR protocol designed to improve the liveness of chained BFT

protocols such as HotStuff. Chained BFT protocols exploit the structural symmetry

between consecutive consensus phases to pipeline agreement instances: for example,

each voting round serves simultaneously as the commit phase of one instance, and the

pre-commit phase of the next (Fig. 5.4). This pipelining amortize cryptographic over-
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heads and reduces latency by minimize the wait-time between consecutive proposals.

To further enhance fairness and resilience, many chained BFT protocols also employ

proactive leader rotation—known as leader-speaks-once (LSO)—in which each leader

makes only a single proposal before passing control to the next.

View 1

A A

B

A

B

C

B

C

A

D

prepareQC for A precommitQC for A
prepareQC for B

commitQC for A
precommitQC for B

prepareQC for C

Figure 5.4: An illustration of chained HotStuff. Each quorum certificate (QC) simultaneously
serves as the prepareQC, precommitQC, and commitQC for a different proposal.

Liveness Woes In practice, however, this combination of pipelining and leader rotation

significantly weakens liveness under partial synchrony or failure. Traditional chained

LSO protocols (CLSO) require multiple consecutive correct leaders to make progress—

a fragile assumption that often fails in realistic deployments with Byzantine or slow

nodes. HotStuff, for example, needs at least four consecutive correct leaders to commit a

proposal. In the presence of faults (or even simple delays), this requirement can severely

impact latency. With n = 100 replicas, we find that HotStuff takes an average of 12

rounds, representing a 4x increase over the ideal case.

BeeGees, in a Nutshell To address this limitation, BeeGees introduces a CLSO protocol

that safely removes the need for consecutive correct leaders. The key insight is simple.

While traditional BFT protocols disregard prepare votes during view changes—since
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they are not required for safety1—BeeGees leverages them to enhance liveness. Specif-

ically, prepare votes help BeeGees distinguish between omission/asynchrony and active

equivocation.

In the case of omission or asynchrony, BeeGees uses prepare votes to prevent the

formation of “dangerous” quorum certificates (QCs)—those that might otherwise allow

different replicas to commit conflicting values. In the case of equivocation, BeeGees

detects when such a QC could have formed and proactively aborts the corresponding

proposal. Furthermore, prepare votes allow BeeGees to detect implicit QCs: those that

should have formed under a correct leader, but were witheld by a subsequent faulty one.

Alltogether, these mechanisms allow BeeGees to safely commit proposals even without

consecutive correct leaders.

Evaluation BeeGees refined commit rule significantly improves the protocol’s ability to

"stay alive" in the face of faulty of slow leaders. In a 100-replica deployment, BeeGees

reduces expected commit latency from 12 rounds (in HotStuff) to just 4.5 rounds—a

3x improvement. It also slashes worst-case latency under the most unfavorable leader

schedules from 129 rounds (HotStuff) to 18—a 7x reduction.

Importantly, BeeGees retains the effieciency characteristics of modern BFT proto-

cols. Under synchronous and failure-free conditions, it commits in just two phases—the

best in class [67, 91], and theoretical minimum [2]. It requires only quadratic communi-

cation when using threshold signatures [80], and can be reduced to linear overhead with

succinct cryptographic proofs such as SNARKs [3].

1A notable exception includes optimistic fast-path protocols like Zyzzyva [101] and SBFT [80], which
use superquorums of all n prepare votes.
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5.1.3 Morty: Scaling Concurrency Control with Re-Execution

Morty [28] is a high performance, crash fault tolerant (CFT) key-value store that over-

comes contention bottlenecks in transactional workloads by leveraging excess CPU re-

sources to perform dynamic transaction re-execution. This approach yields substan-

tial performance gains, particularly in geo-distributed deployments which are especially

prone to high abort rates under contention.

Performance Struggles Under Contention For ease of development, applications in-

creasingly demand strong consistency guarantees—they rely on transactions for atomic-

ity, and serializability for integrity. Enforcing these guarantees, however, imposes over-

head, especially in workloads with high contention, where transactions must be carefully

serialized. Traditional concurrency control mechanisms struggle in these scenarios: un-

der two-phase locking (2PL), conflicting transactions block and may deadlock; under

optimistic concurrency control (OCC), they abort and retry. The problem is exacer-

bated in geo-distributed environments, where long transaction durations increase the

likelihood of overlapping execution. We formalize this intuition through the concept of

conflict windows, which upper-bound the achievable performance of any transactional

system under contention.

Scaling in the Face of Contention Existing concurrency control schemes fail to effi-

ciently sequence conflict windows. For example, OCC systems often rely on random-

ized exponential backoff to reduce conflict likelihood, but this introduces unnecessary

gaps between conflict windows, leaving performance untapped. Morty addresses this

inefficiency through dynamic re-execution. Rather than relying solely on speculative

execution and validation, Morty eagerly exposes the writes of in-progress transactions

and notifies concurrent readers who may have missed those writes. In an effort to avoid

aborts, clients altruistically roll back and re-execute from the point of the missed write.
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This mechanism tightly aligns conflict windows and maximizes concurrency. Figure 5.5

illustrates a simple re-execution scenario with three concurrent transactions.

T1

T2

T3

r1(x0) w1(x1)

r2(x0)

r3(x0)

w0(x0)

w3(x3)

r2(x1)

r3(x1) r3(x2)

w2(x2)

Figure 5.5: Transaction re-execution with three concurrent transactions. T2 and T3 initially miss
the write of T1, and re-execute once w1 becomes visible. This repeates for T3 upon missing the
write of T2.

To support re-execution, Morty adopts a continuation passing style (CPS) API for

programming transactions—an approach popularized by systems such as FaRM [52].

This allows each transaction step to express both its current context (the state resulting

from previous execution) and its continuation (what to execute next). Clients cache

both the context and continuation, and dynamically materialize a new execution upon

learning of a previously missed, relevant write.

While re-execution incurs overhead comparable to aboring and retrying—both

clients and servers need to consume additional CPU resources—this cost is absorbed

by otherwise idle resources. Under high contention, workloads are often bottlenecked

by coordination delays (e.g., long transaction backoff), not compute capacity. For in-

stance, we find that both Google Spanner [40] and TAPIR [195] utilize only about 17%

of a single core when operating under high contention. Morty, by contrast, harnesses

these idle CPU resources to re-execute transactions rather than abort them. As a result,

Morty commits over 99% of transactions, dramatically reducing wasted work.

Evaluation Our evaluation shows that Morty significantly outperforms existing trans-

actional CFT data stores in both regional and and geo-distributed settings. For example,
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on TPC-C with 100 warehouses, Morty achieves a 7.4x throughput improvement over

Spanner, and a 4.4x improvement over TAPIR. Under extreme contention, these gains

grow to 95x and 52x, respectively.
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